These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37956157)

  • 1. Gait variability of outdoor vs treadmill walking with bilateral robotic ankle exoskeletons under proportional myoelectric control.
    Hybart R; Ferris D
    PLoS One; 2023; 18(11):e0294241. PubMed ID: 37956157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic cost of walking with electromechanical ankle exoskeletons under proportional myoelectric control on a treadmill and outdoors.
    Hybart R; Villancio-Wolter KS; Ferris DP
    PeerJ; 2023; 11():e15775. PubMed ID: 37525661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary Validation of Proportional Myoelectric Control of A Commercially Available Robotic Ankle Exoskeleton.
    Hybart RL; Ferris DP
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-5. PubMed ID: 36176129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.
    Koller JR; Remy CD; Ferris DP
    J Neuroeng Rehabil; 2018 May; 15(1):42. PubMed ID: 29801451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromechanical Adaptation to Walking With Electromechanical Ankle Exoskeletons Under Proportional Myoelectric Control.
    Hybart RL; Ferris DP
    IEEE Open J Eng Med Biol; 2023; 4():119-128. PubMed ID: 38274783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altering gait variability with an ankle exoskeleton.
    Antonellis P; Galle S; De Clercq D; Malcolm P
    PLoS One; 2018; 13(10):e0205088. PubMed ID: 30356309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.
    Galle S; Malcolm P; Collins SH; De Clercq D
    J Neuroeng Rehabil; 2017 Apr; 14(1):35. PubMed ID: 28449684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting walking response to ankle exoskeletons using data-driven models.
    Rosenberg MC; Banjanin BS; Burden SA; Steele KM
    J R Soc Interface; 2020 Oct; 17(171):20200487. PubMed ID: 33050782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.
    Kao PC; Lewis CL; Ferris DP
    J Neuroeng Rehabil; 2010 Jul; 7():33. PubMed ID: 20659331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overground Walking With a Transparent Exoskeleton Shows Changes in Spatiotemporal Gait Parameters.
    Andrade RM; Sapienza S; Mohebbi A; Fabara EE; Bonato P
    IEEE J Transl Eng Health Med; 2024; 12():182-193. PubMed ID: 38088995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Haptic Cues and an Active Ankle Exoskeleton on Gait Characteristics.
    Wu MI; Stegall P; Siu HC; Stirling L
    Hum Factors; 2024 Mar; 66(3):904-915. PubMed ID: 35815866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of a powered ankle exoskeleton on human stability and balance.
    Gonzalez S; Stegall P; Cain SM; Siu HC; Stirling L
    Appl Ergon; 2022 Sep; 103():103768. PubMed ID: 35461062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmented Reality Feedback for Exoskeleton-Assisted Walking. A Feasibility Study.
    Pinto-Fernandez D; Gomez M; Rodrigues C; Rojo A; Raya R; Rocon E; Moreno JC; Torricelli D
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing exoskeleton assistance to improve walking speed and energy economy for older adults.
    Lakmazaheri A; Song S; Vuong BB; Biskner B; Kado DM; Collins SH
    J Neuroeng Rehabil; 2024 Jan; 21(1):1. PubMed ID: 38167151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.