These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37956245)

  • 1. High-Precision Calculation of Nanoparticle (Nanocrystal) Potentials of Mean Force and Internal Energies.
    Upah A; Thomas A; Hallstrom J; Travesset A
    J Chem Theory Comput; 2024 Feb; 20(4):1559-1567. PubMed ID: 37956245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rosenbluth-sampled nonequilibrium work method for calculation of free energies in molecular simulation.
    Wu D; Kofke DA
    J Chem Phys; 2005 May; 122(20):204104. PubMed ID: 15945710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized Potential of Mean Force Calculations for Standard Binding Free Energies.
    Buch I; Sadiq SK; De Fabritiis G
    J Chem Theory Comput; 2011 Jun; 7(6):1765-72. PubMed ID: 26596439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simplified confinement method for calculating absolute free energies and free energy and entropy differences.
    Ovchinnikov V; Cecchini M; Karplus M
    J Phys Chem B; 2013 Jan; 117(3):750-62. PubMed ID: 23268557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy Test of the OPLS-AA Force Field for Calculating Free Energies of Mixing and Comparison with PAC-MAC.
    Sweere AJM; Fraaije JGEM
    J Chem Theory Comput; 2017 May; 13(5):1911-1923. PubMed ID: 28418655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding free-energy perturbation calculations through a model of harmonic oscillators: theory and implications to improve the sampling efficiency by molecular simulation.
    Wu D
    J Chem Phys; 2010 Dec; 133(24):244116. PubMed ID: 21197985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic Decomposition of Solvation Free Energies with Particle Mesh Ewald and Long-Range Lennard-Jones Interactions in Grid Inhomogeneous Solvation Theory.
    Chen L; Cruz A; Roe DR; Simmonett AC; Wickstrom L; Deng N; Kurtzman T
    J Chem Theory Comput; 2021 May; 17(5):2714-2724. PubMed ID: 33830762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the calculation of free energies over Hamiltonian and order parameters via perturbation and thermodynamic integration.
    Escobedo FA
    J Chem Phys; 2021 Sep; 155(11):114112. PubMed ID: 34551542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exhaustive mutagenesis in silico: multicoordinate free energy calculations on proteins and peptides.
    Pitera JW; Kollman PA
    Proteins; 2000 Nov; 41(3):385-97. PubMed ID: 11025549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SAMPL6 SAMPLing challenge: assessing the reliability and efficiency of binding free energy calculations.
    Rizzi A; Jensen T; Slochower DR; Aldeghi M; Gapsys V; Ntekoumes D; Bosisio S; Papadourakis M; Henriksen NM; de Groot BL; Cournia Z; Dickson A; Michel J; Gilson MK; Shirts MR; Mobley DL; Chodera JD
    J Comput Aided Mol Des; 2020 May; 34(5):601-633. PubMed ID: 31984465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applicability of a thermodynamic cycle approach for a force field parametrization targeting non-aqueous solvation free energies.
    Mecklenfeld A; Raabe G
    J Comput Aided Mol Des; 2020 Jan; 34(1):71-82. PubMed ID: 31781991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are thermodynamic cycles necessary for continuum solvent calculation of pKas and reduction potentials?
    Ho J
    Phys Chem Chem Phys; 2015 Jan; 17(4):2859-68. PubMed ID: 25503399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using force-based adaptive resolution simulations to calculate solvation free energies of amino acid sidechain analogues.
    Fiorentini R; Kremer K; Potestio R; Fogarty AC
    J Chem Phys; 2017 Jun; 146(24):244113. PubMed ID: 28668024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated workflow for computation of redox potentials, acidity constants, and solvation free energies accelerated by machine learning.
    Wang F; Cheng J
    J Chem Phys; 2022 Jul; 157(2):024103. PubMed ID: 35840372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational Free-Energy Differences of Large Solvated Systems with the Focused Confinement Method.
    Orndorff PB; Le Phan ST; Li KH; van der Vaart A
    J Chem Theory Comput; 2020 Aug; 16(8):5163-5173. PubMed ID: 32559097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alchemical transformations for concerted hydration free energy estimation with explicit solvation.
    Khuttan S; Azimi S; Wu JZ; Gallicchio E
    J Chem Phys; 2021 Feb; 154(5):054103. PubMed ID: 33557533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correcting for the free energy costs of bond or angle constraints in molecular dynamics simulations.
    König G; Brooks BR
    Biochim Biophys Acta; 2015 May; 1850(5):932-943. PubMed ID: 25218695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capping Ligand Vortices as "Atomic Orbitals" in Nanocrystal Self-Assembly.
    Waltmann C; Horst N; Travesset A
    ACS Nano; 2017 Nov; 11(11):11273-11282. PubMed ID: 29077382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grid-based steered thermodynamic integration accelerates the calculation of binding free energies.
    Fowler PW; Jha S; Coveney PV
    Philos Trans A Math Phys Eng Sci; 2005 Aug; 363(1833):1999-2015. PubMed ID: 16099763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ES/IS: estimation of conformational free energy by combining dynamics simulations with explicit solvent with an implicit solvent continuum model.
    Vorobjev YN; Hermans J
    Biophys Chem; 1999 Apr; 78(1-2):195-205. PubMed ID: 10343388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.