These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 37956310)

  • 1. RMBase v3.0: decode the landscape, mechanisms and functions of RNA modifications.
    Xuan J; Chen L; Chen Z; Pang J; Huang J; Lin J; Zheng L; Li B; Qu L; Yang J
    Nucleic Acids Res; 2024 Jan; 52(D1):D273-D284. PubMed ID: 37956310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data.
    Xuan JJ; Sun WJ; Lin PH; Zhou KR; Liu S; Zheng LL; Qu LH; Yang JH
    Nucleic Acids Res; 2018 Jan; 46(D1):D327-D334. PubMed ID: 29040692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data.
    Sun WJ; Li JH; Liu S; Wu J; Zhou H; Qu LH; Yang JH
    Nucleic Acids Res; 2016 Jan; 44(D1):D259-65. PubMed ID: 26464443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding the Atlas of RNA Modifications from Epitranscriptome Sequencing Data.
    Zhang XQ; Yang JH
    Methods Mol Biol; 2019; 1870():107-124. PubMed ID: 30539550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Informatics Pipeline for Profiling and Annotating RNA Modifications.
    Liu Q; Lang X; Gregory RI
    Methods Mol Biol; 2021; 2298():15-27. PubMed ID: 34085236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis.
    Chen K; Song B; Tang Y; Wei Z; Xu Q; Su J; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2021 Jan; 49(D1):D1396-D1404. PubMed ID: 33010174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. m5C-Atlas: a comprehensive database for decoding and annotating the 5-methylcytosine (m5C) epitranscriptome.
    Ma J; Song B; Wei Z; Huang D; Zhang Y; Su J; de Magalhães JP; Rigden DJ; Meng J; Chen K
    Nucleic Acids Res; 2022 Jan; 50(D1):D196-D203. PubMed ID: 34986603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. dreamBase: DNA modification, RNA regulation and protein binding of expressed pseudogenes in human health and disease.
    Zheng LL; Zhou KR; Liu S; Zhang DY; Wang ZL; Chen ZR; Yang JH; Qu LH
    Nucleic Acids Res; 2018 Jan; 46(D1):D85-D91. PubMed ID: 29059382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. tModBase: deciphering the landscape of tRNA modifications and their dynamic changes from epitranscriptome data.
    Lei HT; Wang ZH; Li B; Sun Y; Mei SQ; Yang JH; Qu LH; Zheng LL
    Nucleic Acids Res; 2023 Jan; 51(D1):D315-D327. PubMed ID: 36408909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. POSTAR3: an updated platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins.
    Zhao W; Zhang S; Zhu Y; Xi X; Bao P; Ma Z; Kapral TH; Chen S; Zagrovic B; Yang YT; Lu ZJ
    Nucleic Acids Res; 2022 Jan; 50(D1):D287-D294. PubMed ID: 34403477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WHISTLE: A Functionally Annotated High-Accuracy Map of Human m
    Xu Q; Chen K; Meng J
    Methods Mol Biol; 2021; 2284():519-529. PubMed ID: 33835461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miRNASNP-v3: a comprehensive database for SNPs and disease-related variations in miRNAs and miRNA targets.
    Liu CJ; Fu X; Xia M; Zhang Q; Gu Z; Guo AY
    Nucleic Acids Res; 2021 Jan; 49(D1):D1276-D1281. PubMed ID: 32990748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MiRGator v3.0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting.
    Cho S; Jang I; Jun Y; Yoon S; Ko M; Kwon Y; Choi I; Chang H; Ryu D; Lee B; Kim VN; Kim W; Lee S
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D252-7. PubMed ID: 23193297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pol3Base: a resource for decoding the interactome, expression, evolution, epitranscriptome and disease variations of Pol III-transcribed ncRNAs.
    Cai L; Xuan J; Lin Q; Wang J; Liu S; Xie F; Zheng L; Li B; Qu L; Yang J
    Nucleic Acids Res; 2022 Jan; 50(D1):D279-D286. PubMed ID: 34747466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The epitranscriptome landscape of small noncoding RNAs in stem cells.
    McElhinney JMWR; Hasan A; Sajini AA
    Stem Cells; 2020 Oct; 38(10):1216-1228. PubMed ID: 32598085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis.
    Treiber T; Treiber N; Plessmann U; Harlander S; Daiß JL; Eichner N; Lehmann G; Schall K; Urlaub H; Meister G
    Mol Cell; 2017 Apr; 66(2):270-284.e13. PubMed ID: 28431233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A brief review of RNA modification related database resources.
    Ma J; Zhang L; Chen S; Liu H
    Methods; 2022 Jul; 203():342-353. PubMed ID: 33705860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. POSTAR: a platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins.
    Hu B; Yang YT; Huang Y; Zhu Y; Lu ZJ
    Nucleic Acids Res; 2017 Jan; 45(D1):D104-D114. PubMed ID: 28053162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale analysis of microRNA expression, epi-transcriptomic features and biogenesis.
    Vitsios DM; Davis MP; van Dongen S; Enright AJ
    Nucleic Acids Res; 2017 Feb; 45(3):1079-1090. PubMed ID: 28180281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DirectRMDB: a database of post-transcriptional RNA modifications unveiled from direct RNA sequencing technology.
    Zhang Y; Jiang J; Ma J; Wei Z; Wang Y; Song B; Meng J; Jia G; de Magalhães JP; Rigden DJ; Hang D; Chen K
    Nucleic Acids Res; 2023 Jan; 51(D1):D106-D116. PubMed ID: 36382409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.