These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37956310)

  • 21. DirectRMDB: a database of post-transcriptional RNA modifications unveiled from direct RNA sequencing technology.
    Zhang Y; Jiang J; Ma J; Wei Z; Wang Y; Song B; Meng J; Jia G; de Magalhães JP; Rigden DJ; Hang D; Chen K
    Nucleic Acids Res; 2023 Jan; 51(D1):D106-D116. PubMed ID: 36382409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA modifications in structure prediction - Status quo and future challenges.
    Tanzer A; Hofacker IL; Lorenz R
    Methods; 2019 Mar; 156():32-39. PubMed ID: 30385321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantifying m
    Zhang M; Xiao Y; Jiang Z; Yi C
    Acc Chem Res; 2023 Nov; 56(21):2980-2991. PubMed ID: 37851547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A molecular-level perspective on the frequency, distribution, and consequences of messenger RNA modifications.
    Jones JD; Monroe J; Koutmou KS
    Wiley Interdiscip Rev RNA; 2020 Jul; 11(4):e1586. PubMed ID: 31960607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome.
    Tang Y; Chen K; Song B; Ma J; Wu X; Xu Q; Wei Z; Su J; Liu G; Rong R; Lu Z; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2021 Jan; 49(D1):D134-D143. PubMed ID: 32821938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data.
    Zhou KR; Liu S; Sun WJ; Zheng LL; Zhou H; Yang JH; Qu LH
    Nucleic Acids Res; 2017 Jan; 45(D1):D43-D50. PubMed ID: 27924033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA-Guided RNA Modifications: Biogenesis, Functions, and Applications.
    Li B; Qu L; Yang J
    Acc Chem Res; 2023 Nov; 56(22):3198-3210. PubMed ID: 37931323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring epitranscriptomics for crop improvement and environmental stress tolerance.
    Yang X; Patil S; Joshi S; Jamla M; Kumar V
    Plant Physiol Biochem; 2022 Jul; 183():56-71. PubMed ID: 35567875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RMVar: an updated database of functional variants involved in RNA modifications.
    Luo X; Li H; Liang J; Zhao Q; Xie Y; Ren J; Zuo Z
    Nucleic Acids Res; 2021 Jan; 49(D1):D1405-D1412. PubMed ID: 33021671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrative analyses of the RNA modification machinery reveal tissue- and cancer-specific signatures.
    Begik O; Lucas MC; Liu H; Ramirez JM; Mattick JS; Novoa EM
    Genome Biol; 2020 May; 21(1):97. PubMed ID: 32375858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deciphering the epitranscriptome: A green perspective.
    Burgess A; David R; Searle IR
    J Integr Plant Biol; 2016 Oct; 58(10):822-835. PubMed ID: 27172004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs.
    Dudekula DB; Panda AC; Grammatikakis I; De S; Abdelmohsen K; Gorospe M
    RNA Biol; 2016; 13(1):34-42. PubMed ID: 26669964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNAmod: an integrated system for the annotation of mRNA modifications.
    Liu Q; Gregory RI
    Nucleic Acids Res; 2019 Jul; 47(W1):W548-W555. PubMed ID: 31147718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MeT-DB V2.0: Elucidating Context-Specific Functions of N6-Methyl-Adenosine Methyltranscriptome.
    Liu H; Ma J; Meng J; Zhang L
    Methods Mol Biol; 2021; 2284():507-518. PubMed ID: 33835460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comprehensive comparison and analysis of computational predictors for RNA N6-methyladenosine sites of Saccharomyces cerevisiae.
    Zhu X; He J; Zhao S; Tao W; Xiong Y; Bi S
    Brief Funct Genomics; 2019 Nov; 18(6):367-376. PubMed ID: 31609411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. tsRFun: a comprehensive platform for decoding human tsRNA expression, functions and prognostic value by high-throughput small RNA-Seq and CLIP-Seq data.
    Wang JH; Chen WX; Mei SQ; Yang YD; Yang JH; Qu LH; Zheng LL
    Nucleic Acids Res; 2022 Jan; 50(D1):D421-D431. PubMed ID: 34755848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mismatched and wobble base pairs govern primary microRNA processing by human Microprocessor.
    Li S; Nguyen TD; Nguyen TL; Nguyen TA
    Nat Commun; 2020 Apr; 11(1):1926. PubMed ID: 32317642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome-wide analysis reveals spatial correlation between N6-methyladenosine and binding sites of microRNAs and RNA-binding proteins.
    Das Mandal S; Ray PS
    Genomics; 2021 Jan; 113(1 Pt 1):205-216. PubMed ID: 33340693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemoproteomic Approaches to Studying RNA Modification-Associated Proteins.
    Dai W; Yu NJ; Kleiner RE
    Acc Chem Res; 2023 Oct; 56(19):2726-2739. PubMed ID: 37733063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring the epitranscriptome by native RNA sequencing.
    Begik O; Mattick JS; Novoa EM
    RNA; 2022 Nov; 28(11):1430-1439. PubMed ID: 36104106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.