These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37956510)

  • 21. Investigation on the cavitation bubble collapse and the movement characteristics near spherical particles based on Weiss theorem.
    Zheng X; Wang X; Ding Z; Li A; Lu X; Zhang Y; Zhang Y
    Ultrason Sonochem; 2023 Feb; 93():106301. PubMed ID: 36669430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cavitation bubble interaction with a rigid spherical particle on a microscale.
    Zevnik J; Dular M
    Ultrason Sonochem; 2020 Dec; 69():105252. PubMed ID: 32682313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics simulation of cancer cell membrane perforated by shockwave induced bubble collapse.
    Linh NH; Man VH; Li MS; Wang J; Derreumaux P; Mai TL; Nguyen PH
    J Chem Phys; 2022 Dec; 157(22):225102. PubMed ID: 36546791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of surface tension on the dynamics of a single micro bubble near a rigid wall in an ultrasonic field.
    Wu H; Zheng H; Li Y; Ohl CD; Yu H; Li D
    Ultrason Sonochem; 2021 Oct; 78():105735. PubMed ID: 34479075
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental and Analytical Study of under Water Pressure Wave Induced by the Implosion of a Bubble Generated by Focused Laser.
    Han Z; Mauger C; Chaise T; Elguedj T; Arrigoni M; El Hajem M; Boisson N
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interpreting the influence of liquid temperature on cavitation collapse intensity through bubble dynamic analysis.
    Peng K; Qin FGF; Jiang R; Kang S
    Ultrason Sonochem; 2020 Dec; 69():105253. PubMed ID: 32731127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical and experimental investigations on the jet and shock wave dynamics during the cavitation bubble collapsing near spherical particles based on OpenFOAM.
    Hu J; Lu X; Liu Y; Duan J; Liu Y; Yu J; Zheng X; Zhang Y; Zhang Y
    Ultrason Sonochem; 2023 Oct; 99():106576. PubMed ID: 37683417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of chemical and physical effects of cavitation by analysis of cavitating single bubble dynamics.
    Pandit AV; Sarvothaman VP; Ranade VV
    Ultrason Sonochem; 2021 Sep; 77():105677. PubMed ID: 34332329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manipulation of bubble collapse patterns near the wall of an adherent gas layer.
    Wei Z; Zhang C; Shen C; Wang L; Xin Z
    Ultrason Sonochem; 2023 Dec; 101():106722. PubMed ID: 38091740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The interaction of shockwaves with a vapour bubble in boiling histotripsy: The shock scattering effect.
    Pahk KJ; Lee S; Gélat P; de Andrade MO; Saffari N
    Ultrason Sonochem; 2021 Jan; 70():105312. PubMed ID: 32866882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonspherical laser-induced cavitation bubbles.
    Lim KY; Quinto-Su PA; Klaseboer E; Khoo BC; Venugopalan V; Ohl CD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016308. PubMed ID: 20365461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stability of cavitation structures in a thin liquid layer.
    Wu P; Bai L; Lin W; Yan J
    Ultrason Sonochem; 2017 Sep; 38():75-83. PubMed ID: 28633859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental investigation on the effects of the standoff distance and the initial radius on the dynamics of a single bubble near a rigid wall in an ultrasonic field.
    Wu H; Zhou C; Pu Z; Lai X; Yu H; Li D
    Ultrason Sonochem; 2020 Nov; 68():105197. PubMed ID: 32570003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shock wave emission and cavitation bubble dynamics by femtosecond optical breakdown in polymer solutions.
    Brujan EA
    Ultrason Sonochem; 2019 Nov; 58():104694. PubMed ID: 31450304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of scalable PDMS gas-entrapping microstructures on the dynamics of a single cavitation bubble.
    Robles V; Gonzalez-Parra JC; Cuando-Espitia N; Aguilar G
    Sci Rep; 2022 Nov; 12(1):20379. PubMed ID: 36437305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental investigations of the particle motions induced by a laser-generated cavitation bubble.
    Lv L; Zhang Y; Zhang Y; Zhang Y
    Ultrason Sonochem; 2019 Sep; 56():63-76. PubMed ID: 31101290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble.
    Tzanakis I; Eskin DG; Georgoulas A; Fytanidis DK
    Ultrason Sonochem; 2014 Mar; 21(2):866-78. PubMed ID: 24176799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time.
    Zubalic E; Vella D; Babnik A; Jezeršek M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.