These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37956621)

  • 1. Assessing human internal exposure to chemicals at different physical activity levels: A physiologically based kinetic (PBK) model incorporating metabolic equivalent of task (MET).
    Li Z; Zhang X
    Environ Int; 2023 Dec; 182():108312. PubMed ID: 37956621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic inventory database for assessing age-, gender-, and route-specific chronic internal exposure to chemicals in support of human exposome research.
    Li Z; Xiong J
    J Environ Manage; 2023 Aug; 339():117867. PubMed ID: 37027904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiologically based kinetic (PBK) modelling and human biomonitoring data for mixture risk assessment.
    Pletz J; Blakeman S; Paini A; Parissis N; Worth A; Andersson AM; Frederiksen H; Sakhi AK; Thomsen C; Bopp SK
    Environ Int; 2020 Oct; 143():105978. PubMed ID: 32763630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-PBK: a computational biomonitoring tool for assessing chronic internal exposure to chemicals and metabolites.
    Zhang X; Li Z
    Environ Sci Process Impacts; 2023 Dec; 25(12):2167-2180. PubMed ID: 37982278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling population-wide exposure to environmental chemicals: A case study of naphthalene.
    Zhang X; Li Z
    Chemosphere; 2024 Jun; 358():142217. PubMed ID: 38704043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the predictive capacity of a physiologically based kinetic model using a read-across approach.
    Paini A; Worth A; Kulkarni S; Ebbrell D; Madden J
    Comput Toxicol; 2021 May; 18():100159. PubMed ID: 34027243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A generic avian physiologically-based kinetic (PBK) model and its application in three bird species.
    Baier V; Paini A; Schaller S; Scanes CG; Bone AJ; Ebeling M; Preuss TG; Witt J; Heckmann D
    Environ Int; 2022 Nov; 169():107547. PubMed ID: 36179644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SHEDS-HT: an integrated probabilistic exposure model for prioritizing exposures to chemicals with near-field and dietary sources.
    Isaacs KK; Glen WG; Egeghy P; Goldsmith MR; Smith L; Vallero D; Brooks R; Grulke CM; Özkaynak H
    Environ Sci Technol; 2014 Nov; 48(21):12750-9. PubMed ID: 25222184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing chronic gestational exposure to environmental chemicals in pregnant women: Advancing the co-PBK model.
    Zhang X; Li Z
    Environ Res; 2024 Apr; 247():118160. PubMed ID: 38199464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards best use and regulatory acceptance of generic physiologically based kinetic (PBK) models for in vitro-to-in vivo extrapolation (IVIVE) in chemical risk assessment.
    Najjar A; Punt A; Wambaugh J; Paini A; Ellison C; Fragki S; Bianchi E; Zhang F; Westerhout J; Mueller D; Li H; Shi Q; Gant TW; Botham P; Bars R; Piersma A; van Ravenzwaay B; Kramer NI
    Arch Toxicol; 2022 Dec; 96(12):3407-3419. PubMed ID: 36063173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADME characterization and PBK model development of 3 highly protein-bound UV filters through topical application.
    Li H; Bunglawala F; Hewitt NJ; Pendlington R; Cubberley R; Nicol B; Spriggs S; Baltazar M; Cable S; Dent M
    Toxicol Sci; 2023 Oct; 196(1):1-15. PubMed ID: 37584694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Minderoo-Monaco Commission on Plastics and Human Health.
    Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S
    Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An open source physiologically based kinetic model for the chicken (Gallus gallus domesticus): Calibration and validation for the prediction residues in tissues and eggs.
    Lautz LS; Nebbia C; Hoeks S; Oldenkamp R; Hendriks AJ; Ragas AMJ; Dorne JLCM
    Environ Int; 2020 Mar; 136():105488. PubMed ID: 31991240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translational research to develop a human PBPK models tool kit-volatile organic compounds (VOCs).
    Mumtaz MM; Ray M; Crowell SR; Keys D; Fisher J; Ruiz P
    J Toxicol Environ Health A; 2012; 75(1):6-24. PubMed ID: 22047160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano- and microplastic PBK modeling in the context of human exposure and risk assessment.
    Wardani I; Hazimah Mohamed Nor N; Wright SL; Kooter IM; Koelmans AA
    Environ Int; 2024 Apr; 186():108504. PubMed ID: 38537584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Physiologically-Based Kinetics Modelling to Reliably Predict Internal Concentrations of the UV Filter, Homosalate, After Repeated Oral and Topical Application.
    Najjar A; Schepky A; Krueger CT; Dent M; Cable S; Li H; Grégoire S; Roussel L; Noel-Voisin A; Hewitt NJ; Cardamone E
    Front Pharmacol; 2021; 12():802514. PubMed ID: 35058784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A framework for application of quantitative property-property relationships (QPPRs) in physiologically based pharmacokinetic (PBPK) models for high-throughput prediction of internal dose of inhaled organic chemicals.
    Chebekoue SF; Krishnan K
    Chemosphere; 2019 Jan; 215():634-646. PubMed ID: 30347358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Generalized Physiologically Based Kinetic Model for Fish for Environmental Risk Assessment of Pharmaceuticals.
    Wang J; Nolte TM; Owen SF; Beaudouin R; Hendriks AJ; Ragas AMJ
    Environ Sci Technol; 2022 May; 56(10):6500-6510. PubMed ID: 35472258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Web-Based Toolbox to Support Quantitative In-Vitro-to-In-Vivo Extrapolations (QIVIVE) within Nonanimal Testing Strategies.
    Punt A; Pinckaers N; Peijnenburg A; Louisse J
    Chem Res Toxicol; 2021 Feb; 34(2):460-472. PubMed ID: 33382582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.