These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37956626)

  • 1. Understanding the effects of inhaler resistance on particle deposition behaviour - A computational modelling study.
    Cai X; Dong J; Milton-McGurk L; Lee A; Shen Z; Chan HK; Kourmatzis A; Cheng S
    Comput Biol Med; 2023 Dec; 167():107673. PubMed ID: 37956626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.
    Milenkovic J; Alexopoulos AH; Kiparissides C
    Int J Pharm; 2014 Jan; 461(1-2):129-36. PubMed ID: 24296048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Wei X; Hindle M; Kaviratna A; Huynh BK; Delvadia RR; Sandell D; Byron PR
    J Aerosol Med Pulm Drug Deliv; 2018 Dec; 31(6):358-371. PubMed ID: 29878859
    [No Abstract]   [Full Text] [Related]  

  • 5. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data.
    Ahookhosh K; Saidi M; Aminfar H; Mohammadpourfard M; Hamishehkar H; Yaqoubi S
    Int J Pharm; 2020 Sep; 587():119599. PubMed ID: 32663586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns.
    Kadota K; Inoue N; Matsunaga Y; Takemiya T; Kubo K; Imano H; Uchiyama H; Tozuka Y
    J Pharm Pharmacol; 2020 Jan; 72(1):17-28. PubMed ID: 31713883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.
    Kolanjiyil AV; Kleinstreuer C; Sadikot RT
    Comput Biol Med; 2017 May; 84():247-253. PubMed ID: 27836120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating inter-patient variability of dispersion in dry powder inhalers using CFD-DEM simulations.
    Benque B; Khinast JG
    Eur J Pharm Sci; 2021 Jan; 156():105574. PubMed ID: 32980431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro and In Silico Investigations on Drug Delivery in the Mouth-Throat Models with Handihaler®.
    Huang F; Zhou X; Dai W; Yu J; Zhou Z; Tong Z; Yu A
    Pharm Res; 2022 Nov; 39(11):3005-3019. PubMed ID: 36071350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the mouthpiece and chamber of Turbuhaler® on the aerosolization of API-only powder formulations.
    Zhu Q; Gou D; Chan HK; Kourmatzis A; Yang R
    Int J Pharm; 2023 Apr; 637():122871. PubMed ID: 36948474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Dry Powder Inhaler Patient Interfaces for Improved Aerosol Delivery to Children.
    Bass K; Longest W
    AAPS PharmSciTech; 2020 May; 21(5):157. PubMed ID: 32451773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Tests for Aerosol Deposition. IV: Simulating Variations in Human Breath Profiles for Realistic DPI Testing.
    Delvadia RR; Wei X; Longest PW; Venitz J; Byron PR
    J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):196-206. PubMed ID: 26447531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The clinical relevance of dry powder inhaler performance for drug delivery.
    Demoly P; Hagedoorn P; de Boer AH; Frijlink HW
    Respir Med; 2014 Aug; 108(8):1195-203. PubMed ID: 24929253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler.
    Bass K; Farkas D; Longest W
    AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro tests for aerosol deposition. III: effect of inhaler insertion angle on aerosol deposition.
    Delvadia RR; Longest PW; Hindle M; Byron PR
    J Aerosol Med Pulm Drug Deliv; 2013 Jun; 26(3):145-56. PubMed ID: 23025452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the Respimat Soft Mist Inhaler using a concurrent CFD and in vitro approach.
    Worth Longest P; Hindle M
    J Aerosol Med Pulm Drug Deliv; 2009 Jun; 22(2):99-112. PubMed ID: 18956950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow Structure and Particle Deposition Analyses for Optimization of a Pressurized Metered Dose Inhaler (pMDI) in a Model of Tracheobronchial Airway.
    Ahookhosh K; Saidi M; Mohammadpourfard M; Aminfar H; Hamishehkar H; Farnoud A; Schmid O
    Eur J Pharm Sci; 2021 Sep; 164():105911. PubMed ID: 34129919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Chinese expert consensus on standardized inhaler device application in stable chronic airway diseases (2023)].
    Inhalation Therapy and Respiratory Rehabilitation Group, Respiratory Equipment Committee of China Association of Medical Equipment
    Zhonghua Jie He He Hu Xi Za Zhi; 2023 Nov; 46(11):1055-1067. PubMed ID: 37914418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational investigation of particle penetration and deposition pattern in a realistic respiratory tract model from different types of dry powder inhalers.
    Kim YH; Li DD; Park S; Yi DS; Yeoh GH; Abbas A
    Int J Pharm; 2022 Jan; 612():121293. PubMed ID: 34808267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.