BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37957226)

  • 1. Molecular dissection of the soluble photosynthetic antenna from the cryptophyte alga Hemiselmis andersenii.
    Rathbone HW; Laos AJ; Michie KA; Iranmanesh H; Biazik J; Goodchild SC; Thordarson P; Green BR; Curmi PMG
    Commun Biol; 2023 Nov; 6(1):1158. PubMed ID: 37957226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular structures reveal the origin of spectral variation in cryptophyte light harvesting antenna proteins.
    Michie KA; Harrop SJ; Rathbone HW; Wilk KE; Teng CY; Hoef-Emden K; Hiller RG; Green BR; Curmi PMG
    Protein Sci; 2023 Mar; 32(3):e4586. PubMed ID: 36721353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of the phycobiliprotein antenna of the cryptophyte alga Guillardia theta cultured under different light intensities.
    Kieselbach T; Cheregi O; Green BR; Funk C
    Photosynth Res; 2018 Mar; 135(1-3):149-163. PubMed ID: 28540588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromophore composition of the phycobiliprotein Cr-PC577 from the cryptophyte Hemiselmis pacifica.
    Overkamp KE; Langklotz S; Aras M; Helling S; Marcus K; Bandow JE; Hoef-Emden K; Frankenberg-Dinkel N
    Photosynth Res; 2014 Dec; 122(3):293-304. PubMed ID: 25134685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light-harvesting proteins.
    Harrop SJ; Wilk KE; Dinshaw R; Collini E; Mirkovic T; Teng CY; Oblinsky DG; Green BR; Hoef-Emden K; Hiller RG; Scholes GD; Curmi PM
    Proc Natl Acad Sci U S A; 2014 Jul; 111(26):E2666-75. PubMed ID: 24979784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth phase-dependent reorganization of cryptophyte photosystem I antennae.
    Zhang S; Si L; Su X; Zhao X; An X; Li M
    Commun Biol; 2024 May; 7(1):560. PubMed ID: 38734819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phycoerythrin Association with Photosystem II in the Cryptophyte Alga Rhodomonas salina.
    Stadnichuk IN; Novikova TM; Miniuk GS; Boichenko VA; Bolychevtseva YV; Gusev ES; Lukashev EP
    Biochemistry (Mosc); 2020 Jun; 85(6):679-688. PubMed ID: 32586231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy transfer pathways in the CAC light-harvesting complex of Rhodomonas salina.
    Šebelík V; West R; Trsková EK; Kaňa R; Polívka T
    Biochim Biophys Acta Bioenerg; 2020 Nov; 1861(11):148280. PubMed ID: 32717221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaffolding proteins guide the evolution of algal light harvesting antennas.
    Rathbone HW; Michie KA; Landsberg MJ; Green BR; Curmi PMG
    Nat Commun; 2021 Mar; 12(1):1890. PubMed ID: 33767155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable Phycobilin Modification: An Alternative Photoacclimation Response in Cryptophyte Algae.
    Spangler LC; Yu M; Jeffrey PD; Scholes GD
    ACS Cent Sci; 2022 Mar; 8(3):340-350. PubMed ID: 35350600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability in spectral absorption within cryptophyte phycobiliprotein types.
    Merritt KA; Richardson TL
    J Phycol; 2024 Apr; 60(2):528-540. PubMed ID: 38456338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemiselmis aquamarina sp. nov. (Cryptomonadales, Cryptophyceae), A Cryptophyte with A Novel Phycobiliprotein Type (Cr-PC 564).
    Magalhães K; Santos AL; Vaulot D; Oliveira MC
    Protist; 2021 Aug; 172(4):125832. PubMed ID: 34597847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phycobiliprotein diffusion in chloroplasts of cryptophyte Rhodomonas CS24.
    Mirkovic T; Wilk KE; Curmi PM; Scholes GD
    Photosynth Res; 2009 Apr; 100(1):7-17. PubMed ID: 19224391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principles Models for Biological Light-Harvesting: Phycobiliprotein Complexes from Cryptophyte Algae.
    Lee MK; Bravaya KB; Coker DF
    J Am Chem Soc; 2017 Jun; 139(23):7803-7814. PubMed ID: 28521106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete sequence and analysis of the mitochondrial genome of Hemiselmis andersenii CCMP644 (Cryptophyceae).
    Kim E; Lane CE; Curtis BA; Kozera C; Bowman S; Archibald JM
    BMC Genomics; 2008 May; 9():215. PubMed ID: 18474103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversification of light capture ability was accompanied by the evolution of phycobiliproteins in cryptophyte algae.
    Greenwold MJ; Cunningham BR; Lachenmyer EM; Pullman JM; Richardson TL; Dudycha JL
    Proc Biol Sci; 2019 May; 286(1902):20190655. PubMed ID: 31088271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phycobilisomes and Phycobiliproteins in the Pigment Apparatus of Oxygenic Photosynthetics: From Cyanobacteria to Tertiary Endosymbiosis.
    Stadnichuk IN; Kusnetsov VV
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural basis of far-red light absorbance by allophycocyanins.
    Soulier N; Bryant DA
    Photosynth Res; 2021 Jan; 147(1):11-26. PubMed ID: 33058014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy.
    Doust AB; Marai CN; Harrop SJ; Wilk KE; Curmi PM; Scholes GD
    J Mol Biol; 2004 Nov; 344(1):135-53. PubMed ID: 15504407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exchange of a single amino acid residue in the cryptophyte phycobiliprotein lyase GtCPES expands its substrate specificity.
    Tomazic N; Overkamp KE; Wegner H; Gu B; Mahler F; Aras M; Keller S; Pierik AJ; Hofmann E; Frankenberg-Dinkel N
    Biochim Biophys Acta Bioenerg; 2021 Dec; 1862(12):148493. PubMed ID: 34537203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.