BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37957351)

  • 1. Flexible control of vocal timing in Carollia perspicillata bats enables escape from acoustic interference.
    Kiai A; Clemens J; Kössl M; Poeppel D; Hechavarría J
    Commun Biol; 2023 Nov; 6(1):1153. PubMed ID: 37957351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The frugivorous bat
    Beetz MJ; Kössl M; Hechavarría JC
    J Exp Biol; 2021 Mar; 224(Pt 6):. PubMed ID: 33568443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bats increase vocal amplitude and decrease vocal complexity to mitigate noise interference during social communication.
    Jiang T; Guo X; Lin A; Wu H; Sun C; Feng J; Kanwal JS
    Anim Cogn; 2019 Mar; 22(2):199-212. PubMed ID: 30631993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae).
    Brinkløv S; Jakobsen L; Ratcliffe JM; Kalko EK; Surlykke A
    J Acoust Soc Am; 2011 Jan; 129(1):427-35. PubMed ID: 21303022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Echolocation-related reversal of information flow in a cortical vocalization network.
    García-Rosales F; López-Jury L; González-Palomares E; Wetekam J; Cabral-Calderín Y; Kiai A; Kössl M; Hechavarría JC
    Nat Commun; 2022 Jun; 13(1):3642. PubMed ID: 35752629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness of cortical and subcortical processing in the presence of natural masking sounds.
    Beetz MJ; García-Rosales F; Kössl M; Hechavarría JC
    Sci Rep; 2018 May; 8(1):6863. PubMed ID: 29717258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bats adjust temporal parameters of echolocation pulses but not those of communication calls in response to traffic noise.
    Song S; Lin A; Jiang T; Zhao X; Metzner W; Feng J
    Integr Zool; 2019 Nov; 14(6):576-588. PubMed ID: 30811841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bats distress vocalizations carry fast amplitude modulations that could represent an acoustic correlate of roughness.
    Hechavarría JC; Jerome Beetz M; García-Rosales F; Kössl M
    Sci Rep; 2020 Apr; 10(1):7332. PubMed ID: 32355293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Echolocating bats exhibit differential amplitude compensation for noise interference at a sub-call level.
    Lu M; Zhang G; Luo J
    J Exp Biol; 2020 Oct; 223(Pt 19):. PubMed ID: 32843365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term and persistent vocal plasticity in adult bats.
    Genzel D; Desai J; Paras E; Yartsev MM
    Nat Commun; 2019 Jul; 10(1):3372. PubMed ID: 31358755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active acoustic interference elicits echolocation changes in heterospecific bats.
    Jones TK; Wohlgemuth MJ; Conner WE
    J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29950451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An audio-vocal interface in echolocating horseshoe bats.
    Metzner W
    J Neurosci; 1993 May; 13(5):1899-915. PubMed ID: 8478683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats.
    Tressler J; Smotherman MS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Oct; 195(10):923-34. PubMed ID: 19672604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats.
    Amichai E; Blumrosen G; Yovel Y
    Proc Biol Sci; 2015 Dec; 282(1821):20152064. PubMed ID: 26702045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Lombard effect emerges early in young bats: implications for the development of audio-vocal integration.
    Luo J; Lingner A; Firzlaff U; Wiegrebe L
    J Exp Biol; 2017 Mar; 220(Pt 6):1032-1037. PubMed ID: 28011824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambient noise causes independent changes in distinct spectro-temporal features of echolocation calls in horseshoe bats.
    Hage SR; Jiang T; Berquist SW; Feng J; Metzner W
    J Exp Biol; 2014 Jul; 217(Pt 14):2440-4. PubMed ID: 24855671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Echolocating bats rely on audiovocal feedback to adapt sonar signal design.
    Luo J; Moss CF
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10978-10983. PubMed ID: 28973851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical control of vocal plasticity in an echolocating bat.
    Luo J; Wiegrebe L
    J Exp Biol; 2016 Mar; 219(Pt 6):878-86. PubMed ID: 26823102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytoarchitecture of the superior olivary complex of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus and Carollia perspicillata) with different foraging behavior.
    Gibbons I; Sundaram V; Adogwa A; Odekunle A
    Braz J Biol; 2020; 80(1):180-186. PubMed ID: 31090816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Echolocating Daubenton's bats call louder, but show no spectral jamming avoidance in response to bands of masking noise during a landing task.
    Pedersen MB; Uebel AS; Beedholm K; Foskolos I; Stidsholt L; Madsen PT
    J Exp Biol; 2022 Apr; 225(7):. PubMed ID: 35262171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.