These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37957494)

  • 1. Investigating rate-limited sorption, sorption to air-water interfaces, and colloid-facilitated transport during PFAS leaching.
    Bierbaum T; Hansen SK; Poudel B; Haslauer C
    Environ Sci Pollut Res Int; 2023 Dec; 30(58):121529-121547. PubMed ID: 37957494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air-water interfacial collapse and rate-limited solid desorption control Perfluoroalkyl acid leaching from the vadose zone.
    Stults JF; Schaefer CE; Fang Y; Devon J; Nguyen D; Real I; Hao S; Guelfo JL
    J Contam Hydrol; 2024 Jul; 265():104382. PubMed ID: 38861839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based identification of vadose zone controls on PFAS mobility under semi-arid climate conditions.
    Wallis I; Hutson J; Davis G; Kookana R; Rayner J; Prommer H
    Water Res; 2022 Oct; 225():119096. PubMed ID: 36162294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated leaching of PFAS from land-applied municipal biosolids at agricultural sites.
    Silva JAK; Guelfo JL; Šimůnek J; McCray JE
    J Contam Hydrol; 2022 Dec; 251():104089. PubMed ID: 36223689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media.
    Brusseau ML; Guo B; Huang D; Yan N; Lyu Y
    Water Res; 2021 Sep; 202():117405. PubMed ID: 34273774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention of PFOS and PFOA Mixtures by Trapped Gas Bubbles in Porous Media.
    Abraham JEF; Mumford KG; Patch DJ; Weber KP
    Environ Sci Technol; 2022 Nov; 56(22):15489-15498. PubMed ID: 36279175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A field study to assess the role of air-water interfacial sorption on PFAS leaching in an AFFF source area.
    Schaefer CE; Lavorgna GM; Lippincott DR; Nguyen D; Christie E; Shea S; O'Hare S; Lemes MCS; Higgins CP; Field J
    J Contam Hydrol; 2022 Jun; 248():104001. PubMed ID: 35367711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil column leaching of pesticides.
    Katagi T
    Rev Environ Contam Toxicol; 2013; 221():1-105. PubMed ID: 23090630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air-water interfacial areas relevant for transport of per and poly-fluoroalkyl substances.
    Brusseau ML; Guo B
    Water Res; 2021 Dec; 207():117785. PubMed ID: 34731664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of per- and polyfluoroalkyl substances (PFAS): Comparison of leaching behavior by three different leaching tests.
    Bierbaum T; Klaas N; Braun J; Nürenberg G; Lange FT; Haslauer C
    Sci Total Environ; 2023 Jun; 876():162588. PubMed ID: 36871732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces.
    Brusseau ML; Guo B
    Chemosphere; 2022 Sep; 302():134938. PubMed ID: 35568214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic investigation of single solute, binary and ternary PFAS transport in water-saturated soil using batch and 1-dimensional column studies: Focus on mixture effects.
    Umeh AC; Naidu R; Olisa E; Liu Y; Qi F; Bekele D
    J Hazard Mater; 2024 Jan; 461():132688. PubMed ID: 37797575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined leaching and plant uptake simulations of PFOA and PFOS under field conditions.
    Gassmann M; Weidemann E; Stahl T
    Environ Sci Pollut Res Int; 2021 Jan; 28(2):2097-2107. PubMed ID: 32865684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive retention model for PFAS transport in subsurface systems.
    Brusseau ML; Yan N; Van Glubt S; Wang Y; Chen W; Lyu Y; Dungan B; Carroll KC; Holguin FO
    Water Res; 2019 Jan; 148():41-50. PubMed ID: 30343197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions.
    Høisæter Å; Pfaff A; Breedveld GD
    J Contam Hydrol; 2019 Apr; 222():112-122. PubMed ID: 30878240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the co-transport of viruses and colloids in unsaturated porous media.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S
    J Contam Hydrol; 2015 Oct; 181():82-101. PubMed ID: 25681069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating PFAS transport influenced by rate-limited multi-process retention.
    Brusseau ML
    Water Res; 2020 Jan; 168():115179. PubMed ID: 31639593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PFAS transport under lower water-saturation conditions characterized with instrumented-column systems.
    Bigler M; He X; Brusseau ML
    Water Res; 2024 Aug; 260():121922. PubMed ID: 38878314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonideal Transport and Extended Elution Tailing of PFOS in Soil.
    Brusseau ML; Khan N; Wang Y; Yan N; Van Glubt S; Carroll KC
    Environ Sci Technol; 2019 Sep; 53(18):10654-10664. PubMed ID: 31464435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of soil colloids during flow interruption increases the pore-water PFAS concentration in saturated soil.
    Borthakur A; Cranmer BK; Dooley GP; Blotevogel J; Mahendra S; Mohanty SK
    Environ Pollut; 2021 Oct; 286():117297. PubMed ID: 33971474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.