BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37957947)

  • 1. Advances and opportunities in unraveling cold-tolerance mechanisms in the world's primary staple food crops.
    Jan S; Rustgi S; Barmukh R; Shikari AB; Leske B; Bekuma A; Sharma D; Ma W; Kumar U; Kumar U; Bohra A; Varshney RK; Mir RR
    Plant Genome; 2024 Mar; 17(1):e20402. PubMed ID: 37957947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L.
    Duan S; Liu B; Zhang Y; Li G; Guo X
    BMC Genomics; 2019 Apr; 20(1):257. PubMed ID: 30935363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing salt stress-resilient crops: Current progress and future challenges.
    Liang X; Li J; Yang Y; Jiang C; Guo Y
    J Integr Plant Biol; 2024 Mar; 66(3):303-329. PubMed ID: 38108117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective.
    Kosová K; Vítámvás P; Urban MO; Klíma M; Roy A; Prášil IT
    Int J Mol Sci; 2015 Sep; 16(9):20913-42. PubMed ID: 26340626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis.
    Pradhan SK; Pandit E; Nayak DK; Behera L; Mohapatra T
    BMC Plant Biol; 2019 Aug; 19(1):352. PubMed ID: 31412781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway.
    Mao D; Chen C
    PLoS One; 2012; 7(10):e47275. PubMed ID: 23077584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global expression profiling of low temperature induced genes in the chilling tolerant japonica rice Jumli Marshi.
    Chawade A; Lindlöf A; Olsson B; Olsson O
    PLoS One; 2013; 8(12):e81729. PubMed ID: 24349120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome Profiling of Maize (
    Waititu JK; Cai Q; Sun Y; Sun Y; Li C; Zhang C; Liu J; Wang H
    Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice.
    Zhang M; Zhao R; Huang K; Huang S; Wang H; Wei Z; Li Z; Bian M; Jiang W; Wu T; Du X
    Plant J; 2022 Oct; 112(2):383-398. PubMed ID: 35996876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets.
    Numan M; Serba DD; Ligaba-Osena A
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZmDREB1A Regulates RAFFINOSE SYNTHASE Controlling Raffinose Accumulation and Plant Chilling Stress Tolerance in Maize.
    Han Q; Qi J; Hao G; Zhang C; Wang C; Dirk LMA; Downie AB; Zhao T
    Plant Cell Physiol; 2020 Feb; 61(2):331-341. PubMed ID: 31638155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis of Dof transcription factors and their response to cold stress in rice (Oryza sativa L.).
    Liu J; Meng Q; Xiang H; Shi F; Ma L; Li Y; Liu C; Liu Y; Su B
    BMC Genomics; 2021 Nov; 22(1):800. PubMed ID: 34742240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.
    Bevilacqua CB; Basu S; Pereira A; Tseng TM; Zimmer PD; Burgos NR
    PLoS One; 2015; 10(7):e0132100. PubMed ID: 26230579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses.
    Li Y; Wang X; Li Y; Zhang Y; Gou Z; Qi X; Zhang J
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32756433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative proteomic analysis of QTL CTS-12 derived from wild rice (Oryza rufipogon Griff.), in the regulation of cold acclimation and de-acclimation of rice (Oryza sativa L.) in response to severe chilling stress.
    Cen W; Liu J; Lu S; Jia P; Yu K; Han Y; Li R; Luo J
    BMC Plant Biol; 2018 Aug; 18(1):163. PubMed ID: 30097068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blurring the boundaries between cereal crops and model plants.
    Borrill P
    New Phytol; 2020 Dec; 228(6):1721-1727. PubMed ID: 31571228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf transcriptomic response mediated by cold stress in two maize inbred lines with contrasting tolerance levels.
    Yu T; Zhang J; Cao J; Cai Q; Li X; Sun Y; Li S; Li Y; Hu G; Cao S; Liu C; Wang G; Wang L; Duan Y
    Genomics; 2021 Mar; 113(2):782-794. PubMed ID: 33516847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CCR4-associated factor 1, OsCAF1B, confers tolerance of low-temperature stress to rice seedlings.
    Fang JC; Tsai YC; Chou WL; Liu HY; Chang CC; Wu SJ; Lu CA
    Plant Mol Biol; 2021 Jan; 105(1-2):177-192. PubMed ID: 33025522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold stress and acclimation - what is important for metabolic adjustment?
    Janská A; Marsík P; Zelenková S; Ovesná J
    Plant Biol (Stuttg); 2010 May; 12(3):395-405. PubMed ID: 20522175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.