These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37957952)
1. Computed tomography and guidelines-based human-machine fusion model for predicting resectability of the pancreatic cancer. Yimamu A; Li J; Zhang H; Liang L; Feng L; Wang Y; Zhou C; Li S; Gao Y J Gastroenterol Hepatol; 2024 Feb; 39(2):399-409. PubMed ID: 37957952 [TBL] [Abstract][Full Text] [Related]
2. A multimodal model fusing multiphase contrast-enhanced CT and clinical characteristics for predicting lymph node metastases of pancreatic cancer. Lu Q; Zhou C; Zhang H; Liang L; Zhang Q; Chen X; Xu X; Zhao G; Ma J; Gao Y; Peng Q; Li S Phys Med Biol; 2022 Aug; 67(17):. PubMed ID: 35905729 [No Abstract] [Full Text] [Related]
3. Radiomics analysis for the differentiation of autoimmune pancreatitis and pancreatic ductal adenocarcinoma in Zhang Y; Cheng C; Liu Z; Wang L; Pan G; Sun G; Chang Y; Zuo C; Yang X Med Phys; 2019 Oct; 46(10):4520-4530. PubMed ID: 31348535 [TBL] [Abstract][Full Text] [Related]
4. A pilot study using kernelled support tensor machine for distant failure prediction in lung SBRT. Li S; Yang N; Li B; Zhou Z; Hao H; Folkert MR; Iyengar P; Westover K; Choy H; Timmerman R; Jiang S; Wang J Med Image Anal; 2018 Dec; 50():106-116. PubMed ID: 30266009 [TBL] [Abstract][Full Text] [Related]
5. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features. Yin P; Mao N; Zhao C; Wu J; Sun C; Chen L; Hong N Eur Radiol; 2019 Apr; 29(4):1841-1847. PubMed ID: 30280245 [TBL] [Abstract][Full Text] [Related]
6. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics. Mao B; Zhang L; Ning P; Ding F; Wu F; Lu G; Geng Y; Ma J Eur Radiol; 2020 Dec; 30(12):6924-6932. PubMed ID: 32696256 [TBL] [Abstract][Full Text] [Related]
7. One 3D VOI-based deep learning radiomics strategy, clinical model and radiologists for predicting lymph node metastases in pancreatic ductal adenocarcinoma based on multiphasic contrast-enhanced computer tomography. Liao H; Yang J; Li Y; Liang H; Ye J; Liu Y Front Oncol; 2022; 12():990156. PubMed ID: 36158647 [TBL] [Abstract][Full Text] [Related]
8. A multidomain fusion model of radiomics and deep learning to discriminate between PDAC and AIP based on Wei W; Jia G; Wu Z; Wang T; Wang H; Wei K; Cheng C; Liu Z; Zuo C Jpn J Radiol; 2023 Apr; 41(4):417-427. PubMed ID: 36409398 [TBL] [Abstract][Full Text] [Related]
9. CT classification model of pancreatic serous cystic neoplasms and mucinous cystic neoplasms based on a deep neural network. Yang R; Chen Y; Sa G; Li K; Hu H; Zhou J; Guan Q; Chen F Abdom Radiol (NY); 2022 Jan; 47(1):232-241. PubMed ID: 34636931 [TBL] [Abstract][Full Text] [Related]
10. Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis. Mukherjee S; Patra A; Khasawneh H; Korfiatis P; Rajamohan N; Suman G; Majumder S; Panda A; Johnson MP; Larson NB; Wright DE; Kline TL; Fletcher JG; Chari ST; Goenka AH Gastroenterology; 2022 Nov; 163(5):1435-1446.e3. PubMed ID: 35788343 [TBL] [Abstract][Full Text] [Related]
11. Development and validation of a multi-modality fusion deep learning model for differentiating glioblastoma from solitary brain metastases. Shen S; Li C; Fan Y; Lu S; Yan Z; Liu H; Zhou H; Zhang Z Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 49(1):58-67. PubMed ID: 38615167 [TBL] [Abstract][Full Text] [Related]
12. Application of machine learning model to predict osteoporosis based on abdominal computed tomography images of the psoas muscle: a retrospective study. Huang CB; Hu JS; Tan K; Zhang W; Xu TH; Yang L BMC Geriatr; 2022 Oct; 22(1):796. PubMed ID: 36229793 [TBL] [Abstract][Full Text] [Related]
13. Post-neoadjuvant treatment pancreatic cancer resectability and outcome prediction using CT, Yoo J; Lee JM; Joo I; Lee DH; Yoon JH; Yu MH; Jang JY; Lee SH Cancer Imaging; 2023 May; 23(1):49. PubMed ID: 37217958 [TBL] [Abstract][Full Text] [Related]
14. PET radiomics-based lymphovascular invasion prediction in lung cancer using multiple segmentation and multi-machine learning algorithms. Hosseini SA; Hajianfar G; Ghaffarian P; Seyfi M; Hosseini E; Aval AH; Servaes S; Hanaoka M; Rosa-Neto P; Chawla S; Zaidi H; Ay MR Phys Eng Sci Med; 2024 Dec; 47(4):1613-1625. PubMed ID: 39225775 [TBL] [Abstract][Full Text] [Related]
15. Artificial intelligence for assessment of vascular involvement and tumor resectability on CT in patients with pancreatic cancer. Bereska JI; Janssen BV; Nio CY; Kop MPM; Kazemier G; Busch OR; Struik F; Marquering HA; Stoker J; Besselink MG; Verpalen IM; Eur Radiol Exp; 2024 Feb; 8(1):18. PubMed ID: 38342782 [TBL] [Abstract][Full Text] [Related]
16. Distinguishing common renal cell carcinomas from benign renal tumors based on machine learning: comparing various CT imaging phases, slices, tumor sizes, and ROI segmentation strategies. Zhou T; Guan J; Feng B; Xue H; Cui J; Kuang Q; Chen Y; Xu K; Lin F; Cui E; Long W Eur Radiol; 2023 Jun; 33(6):4323-4332. PubMed ID: 36645455 [TBL] [Abstract][Full Text] [Related]
17. Machine learning-based radiomics analysis of preoperative functional liver reserve with MRI and CT image. Zhu L; Wang F; Chen X; Dong Q; Xia N; Chen J; Li Z; Zhu C BMC Med Imaging; 2023 Jul; 23(1):94. PubMed ID: 37460944 [TBL] [Abstract][Full Text] [Related]
18. CT radiomic features for predicting resectability of oesophageal squamous cell carcinoma as given by feature analysis: a case control study. Ou J; Li R; Zeng R; Wu CQ; Chen Y; Chen TW; Zhang XM; Wu L; Jiang Y; Yang JQ; Cao JM; Tang S; Tang MJ; Hu J Cancer Imaging; 2019 Oct; 19(1):66. PubMed ID: 31619297 [TBL] [Abstract][Full Text] [Related]
19. Preoperative prediction of vessel invasion in locally advanced gastric cancer based on computed tomography radiomics and machine learning. Hu ZW; Liang P; Li ZL; Yong LL; Lu H; Wang R; Gao JB Oncol Lett; 2023 Jul; 26(1):293. PubMed ID: 37274479 [TBL] [Abstract][Full Text] [Related]
20. Classification of precancerous lesions based on fusion of multiple hierarchical features. Zhou H; Liu Z; Li T; Chen Y; Huang W; Zhang Z Comput Methods Programs Biomed; 2023 Feb; 229():107301. PubMed ID: 36516661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]