BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37958330)

  • 1. A Mouse-Specific Model to Detect Genes under Selection in Tumors.
    Chen H; Shu J; Maley CC; Liu L
    Cancers (Basel); 2023 Oct; 15(21):. PubMed ID: 37958330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic selection distinguishes oncogenes and tumor suppressor genes.
    Chandrashekar P; Ahmadinejad N; Wang J; Sekulic A; Egan JB; Asmann YW; Kumar S; Maley C; Liu L
    Bioinformatics; 2020 Mar; 36(6):1712-1717. PubMed ID: 32176769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of new driver and passenger mutations within APOBEC-induced hotspot mutations in bladder cancer.
    Shi MJ; Meng XY; Fontugne J; Chen CL; Radvanyi F; Bernard-Pierrot I
    Genome Med; 2020 Sep; 12(1):85. PubMed ID: 32988402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing between cancer driver and passenger gene alteration candidates via cross-species comparison: a pilot study.
    Ji X; Tang J; Halberg R; Busam D; Ferriera S; Peña MM; Venkataramu C; Yeatman TJ; Zhao S
    BMC Cancer; 2010 Aug; 10():426. PubMed ID: 20707908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes.
    Sudhakar M; Rengaswamy R; Raman K
    Front Genet; 2022; 13():854190. PubMed ID: 35620468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A workflow to study mechanistic indicators for driver gene prediction with Moonlight.
    Nourbakhsh M; Saksager A; Tom N; Chen XS; Colaprico A; Olsen C; Tiberti M; Papaleo E
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37551622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontology-based prediction of cancer driver genes.
    Althubaiti S; Karwath A; Dallol A; Noor A; Alkhayyat SS; Alwassia R; Mineta K; Gojobori T; Beggs AD; Schofield PN; Gkoutos GV; Hoehndorf R
    Sci Rep; 2019 Nov; 9(1):17405. PubMed ID: 31757986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes.
    Collier O; Stoven V; Vert JP
    PLoS Comput Biol; 2019 Sep; 15(9):e1007381. PubMed ID: 31568528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer.
    Silva GO; He X; Parker JS; Gatza ML; Carey LA; Hou JP; Moulder SL; Marcom PK; Ma J; Rosen JM; Perou CM
    Breast Cancer Res Treat; 2015 Jul; 152(2):347-56. PubMed ID: 26109346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SomInaClust: detection of cancer genes based on somatic mutation patterns of inactivation and clustering.
    Van den Eynden J; Fierro AC; Verbeke LP; Marchal K
    BMC Bioinformatics; 2015 Apr; 16():125. PubMed ID: 25903787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GenomeTornadoPlot: a novel R package for CNV visualization and focality analysis.
    Hong C; Thiele R; Feuerbach L
    Bioinformatics; 2022 Mar; 38(7):2036-2038. PubMed ID: 35099519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. driveR: a novel method for prioritizing cancer driver genes using somatic genomics data.
    Ülgen E; Sezerman OU
    BMC Bioinformatics; 2021 May; 22(1):263. PubMed ID: 34030627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OncodriveCLUSTL: a sequence-based clustering method to identify cancer drivers.
    Arnedo-Pac C; Mularoni L; Muiños F; Gonzalez-Perez A; Lopez-Bigas N
    Bioinformatics; 2019 Nov; 35(22):4788-4790. PubMed ID: 31228182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the evaluation of cancer driver genes.
    Tokheim CJ; Papadopoulos N; Kinzler KW; Vogelstein B; Karchin R
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14330-14335. PubMed ID: 27911828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.
    Jia P; Zhao Z
    PLoS Comput Biol; 2014 Feb; 10(2):e1003460. PubMed ID: 24516372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DriverRWH: discovering cancer driver genes by random walk on a gene mutation hypergraph.
    Wang C; Shi J; Cai J; Zhang Y; Zheng X; Zhang N
    BMC Bioinformatics; 2022 Jul; 23(1):277. PubMed ID: 35831792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MM2S: personalized diagnosis of medulloblastoma patients and model systems.
    Gendoo DM; Haibe-Kains B
    Source Code Biol Med; 2016; 11():6. PubMed ID: 27069505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Claudin-low-like mouse mammary tumors show distinct transcriptomic patterns uncoupled from genomic drivers.
    Fougner C; Bergholtz H; Kuiper R; Norum JH; Sørlie T
    Breast Cancer Res; 2019 Jul; 21(1):85. PubMed ID: 31366361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.