These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37958639)

  • 1. Effective Local and Secondary Protein Structure Prediction by Combining a Neural Network-Based Approach with Extensive Feature Design and Selection without Reliance on Evolutionary Information.
    Milchevskiy YV; Milchevskaya VY; Nikitin AM; Kravatsky YV
    Int J Mol Sci; 2023 Oct; 24(21):. PubMed ID: 37958639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PYTHIA: Deep Learning Approach for Local Protein Conformation Prediction.
    Cretin G; Galochkina T; de Brevern AG; Gelly JC
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifaceted analysis of training and testing convolutional neural networks for protein secondary structure prediction.
    Shapovalov M; Dunbrack RL; Vucetic S
    PLoS One; 2020; 15(5):e0232528. PubMed ID: 32374785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.
    Fang C; Shang Y; Xu D
    Proteins; 2018 May; 86(5):592-598. PubMed ID: 29492997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structural alphabet for local protein structures: improved prediction methods.
    Etchebest C; Benros C; Hazout S; de Brevern AG
    Proteins; 2005 Jun; 59(4):810-27. PubMed ID: 15822101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of 8-state protein secondary structures by a novel deep learning architecture.
    Zhang B; Li J; Lü Q
    BMC Bioinformatics; 2018 Aug; 19(1):293. PubMed ID: 30075707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lightweight ProteinUnet2 network for protein secondary structure prediction: a step towards proper evaluation.
    Stapor K; Kotowski K; Smolarczyk T; Roterman I
    BMC Bioinformatics; 2022 Mar; 23(1):100. PubMed ID: 35317722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Method to Generate Complex Predictive Features for Machine Learning-Based Prediction of the Local Structure and Functions of Proteins].
    Milchevskiy YV; Milchevskaya VY; Kravatsky YV
    Mol Biol (Mosk); 2023; 57(1):127-138. PubMed ID: 36976748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PS4: a next-generation dataset for protein single-sequence secondary structure prediction.
    Peracha O
    Biotechniques; 2024 Feb; 76(2):63-70. PubMed ID: 37997848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction.
    Guo Y; Li W; Wang B; Liu H; Zhou D
    BMC Bioinformatics; 2019 Jun; 20(1):341. PubMed ID: 31208331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of structural alphabet protein blocks using data mining.
    Maljković MM; Mitić NS; de Brevern AG
    Biochimie; 2022 Jun; 197():74-85. PubMed ID: 35143919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RiRPSSP: A unified deep learning method for prediction of regular and irregular protein secondary structures.
    Sofi MA; Wani MA
    J Bioinform Comput Biol; 2023 Feb; 21(1):2350001. PubMed ID: 36891973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Context-based features enhance protein secondary structure prediction accuracy.
    Yaseen A; Li Y
    J Chem Inf Model; 2014 Mar; 54(3):992-1002. PubMed ID: 24571803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Local Protein 3D Structures Using Clustering Deep Recurrent Neural Network.
    Zhong W; Gu F
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):593-604. PubMed ID: 32750880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning sparse models for a dynamic Bayesian network classifier of protein secondary structure.
    Aydin Z; Singh A; Bilmes J; Noble WS
    BMC Bioinformatics; 2011 May; 12():154. PubMed ID: 21569525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting residue-wise contact orders in proteins by support vector regression.
    Song J; Burrage K
    BMC Bioinformatics; 2006 Oct; 7():425. PubMed ID: 17014735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting protein secondary structure by a support vector machine based on a new coding scheme.
    Wang LH; Liu J; Li YF; Zhou HB
    Genome Inform; 2004; 15(2):181-90. PubMed ID: 15706504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.