BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37958645)

  • 1. Interactions of Different
    Santamaría RI; Martínez-Carrasco A; Tormo JR; Martín J; Genilloud O; Reyes F; Díaz M
    Int J Mol Sci; 2023 Oct; 24(21):. PubMed ID: 37958645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus.
    Lee N; Kim W; Chung J; Lee Y; Cho S; Jang KS; Kim SC; Palsson B; Cho BK
    ISME J; 2020 May; 14(5):1111-1124. PubMed ID: 31992858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Killing of Escherichia coli by Myxococcus xanthus in aqueous environments requires exopolysaccharide-dependent physical contact.
    Pan H; He X; Lux R; Luan J; Shi W
    Microb Ecol; 2013 Oct; 66(3):630-8. PubMed ID: 23828520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resource level affects relative performance of the two motility systems of Myxococcus xanthus.
    Hillesland KL; Velicer GJ
    Microb Ecol; 2005 May; 49(4):558-66. PubMed ID: 16052373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orphan Hybrid Histidine Protein Kinase SinK Acts as a Signal Integrator To Fine-Tune Multicellular Behavior in
    Glaser MM; Higgs PI
    J Bacteriol; 2019 Mar; 201(6):. PubMed ID: 30617244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor.
    Pérez J; Muñoz-Dorado J; Braña AF; Shimkets LJ; Sevillano L; Santamaría RI
    Microb Biotechnol; 2011 Mar; 4(2):175-83. PubMed ID: 21342463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further characterization and in situ localization of chain-like aggregates of the gliding bacteria Myxococcus fulvus and Myxococcus xanthus.
    Freese A; Reichenbach H; Lünsdorf H
    J Bacteriol; 1997 Feb; 179(4):1246-52. PubMed ID: 9023208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal distribution of chemical signatures exhibited by Myxococcus xanthus in response to metabolic conditions.
    Do H; Madukoma CS; Sundaresan V; Shrout JD; Hoffman AJ; Bohn PW
    Anal Bioanal Chem; 2022 Feb; 414(4):1691-1698. PubMed ID: 34850244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biofilm formation dominated by sophisticated social behaviors in Myxococcus xanthus].
    Wang C; Wang Y; Zheng Y; Zhang K; Hu W; Shi W; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2017 Sep; 33(9):1582-1595. PubMed ID: 28956403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic analysis of the Myxococcus xanthus FruA regulon, and comparative developmental transcriptomic analysis of two fruiting body forming species, Myxococcus xanthus and Myxococcus stipitatus.
    McLoon AL; Boeck ME; Bruckskotten M; Keyel AC; Søgaard-Andersen L
    BMC Genomics; 2021 Nov; 22(1):784. PubMed ID: 34724903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Mechanisms of Signaling in Myxococcus xanthus Development.
    Bretl DJ; Kirby JR
    J Mol Biol; 2016 Sep; 428(19):3805-30. PubMed ID: 27430596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myxococcus xanthus as Host for the Production of Benzoxazoles.
    Winand L; Lernoud L; Meyners SA; Kuhr K; Hiller W; Nett M
    Chembiochem; 2023 Mar; 24(5):e202200635. PubMed ID: 36484355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Pseudochelin Production in Myxococcus xanthus.
    Korp J; Winand L; Sester A; Nett M
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Diverged Transcriptional Network for Usage of Two Fe-S Cluster Biogenesis Machineries in the Delta-Proteobacterium Myxococcus xanthus.
    Sourice M; Askenasy I; Garcia PS; Denis Y; Brasseur G; Kiley PJ; Py B; Aubert C
    mBio; 2023 Feb; 14(1):e0300122. PubMed ID: 36656032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Territorial interactions between two Myxococcus Species.
    Smith DR; Dworkin M
    J Bacteriol; 1994 Feb; 176(4):1201-5. PubMed ID: 8106334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures.
    Müller S; Strack SN; Ryan SE; Kearns DB; Kirby JR
    Appl Environ Microbiol; 2015 Jan; 81(1):203-10. PubMed ID: 25326308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus.
    Müller S; Strack SN; Hoefler BC; Straight PD; Kearns DB; Kirby JR
    Appl Environ Microbiol; 2014 Sep; 80(18):5603-10. PubMed ID: 25002419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of Solitary Predation by Myxococcus xanthus on Escherichia coli Observed at the Single-Cell Level.
    Zhang W; Wang Y; Lu H; Liu Q; Wang C; Hu W; Zhao K
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31704687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gliding motility in bacteria: insights from studies of Myxococcus xanthus.
    Spormann AM
    Microbiol Mol Biol Rev; 1999 Sep; 63(3):621-41. PubMed ID: 10477310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutants defective in the production of encapsulin show a tan-phase-locked phenotype in Myxococcus xanthus.
    Kim D; Choi J; Lee S; Hyun H; Lee K; Cho K
    J Microbiol; 2019 Sep; 57(9):795-802. PubMed ID: 31187417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.