These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
28. Amyloid Aggregates Are Localized to the Nonadherent Detached Fraction of Aging Streptococcus mutans Biofilms. Yarmola E; Ishkov IP; di Cologna NM; Menashe M; Whitener RL; Long JR; Abranches J; Hagen SJ; Brady LJ Microbiol Spectr; 2022 Aug; 10(4):e0166122. PubMed ID: 35950854 [TBL] [Abstract][Full Text] [Related]
29. Involvement of signal peptidase I in Streptococcus sanguinis biofilm formation. Aynapudi J; El-Rami F; Ge X; Stone V; Zhu B; Kitten T; Xu P Microbiology (Reading); 2017 Sep; 163(9):1306-1318. PubMed ID: 28869408 [TBL] [Abstract][Full Text] [Related]
30. Type IV Pili of Streptococcus sanguinis Contribute to Pathogenesis in Experimental Infective Endocarditis. Martini AM; Moricz BS; Woods LJ; Jones BD Microbiol Spectr; 2021 Dec; 9(3):e0175221. PubMed ID: 34756087 [TBL] [Abstract][Full Text] [Related]
31. SpxA1 involved in hydrogen peroxide production, stress tolerance and endocarditis virulence in Streptococcus sanguinis. Chen L; Ge X; Wang X; Patel JR; Xu P PLoS One; 2012; 7(6):e40034. PubMed ID: 22768210 [TBL] [Abstract][Full Text] [Related]
32. Exposure of Streptococcus mutans and Streptococcus sanguinis to blue light in an oral biofilm model. Vaknin M; Steinberg D; Featherstone JD; Feuerstein O Lasers Med Sci; 2020 Apr; 35(3):709-718. PubMed ID: 31713778 [TBL] [Abstract][Full Text] [Related]
33. Availability of Zinc Impacts Interactions between Streptococcus sanguinis and Pseudomonas aeruginosa in Coculture. Li K; Gifford AH; Hampton TH; O'Toole GA J Bacteriol; 2020 Jan; 202(2):. PubMed ID: 31685535 [TBL] [Abstract][Full Text] [Related]
34. Spontaneous Mutants of Streptococcus sanguinis with Defects in the Glucose-Phosphotransferase System Show Enhanced Post-Exponential-Phase Fitness. Zeng L; Walker AR; Lee K; Taylor ZA; Burne RA J Bacteriol; 2021 Oct; 203(22):e0037521. PubMed ID: 34460310 [TBL] [Abstract][Full Text] [Related]
35. Competition and Caries on Enamel of a Dual-Species Biofilm Model with Streptococcus mutans and Streptococcus sanguinis. Díaz-Garrido N; Lozano CP; Kreth J; Giacaman RA Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826216 [TBL] [Abstract][Full Text] [Related]
36. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c. Besingi RN; Wenderska IB; Senadheera DB; Cvitkovitch DG; Long JR; Wen ZT; Brady LJ Microbiology (Reading); 2017 Apr; 163(4):488-501. PubMed ID: 28141493 [TBL] [Abstract][Full Text] [Related]
37. Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation. Okahashi N; Nakata M; Terao Y; Isoda R; Sakurai A; Sumitomo T; Yamaguchi M; Kimura RK; Oiki E; Kawabata S; Ooshima T Microb Pathog; 2011; 50(3-4):148-54. PubMed ID: 21238567 [TBL] [Abstract][Full Text] [Related]
38. Potential effects of Psidium sp., Mangifera sp., Mentha sp. and its mixture (PEM) in reducing bacterial populations in biofilms, adherence and acid production of S. sanguinis and S. mutans. Shafiei Z; Rahim ZHA; Philip K; Thurairajah N; Yaacob H Arch Oral Biol; 2020 Jan; 109():104554. PubMed ID: 31563709 [TBL] [Abstract][Full Text] [Related]
39. A Novel Regulator Modulates Glucan Production, Cell Aggregation and Biofilm Formation in Zhu B; Song L; Kong X; Macleod LC; Xu P Front Microbiol; 2018; 9():1154. PubMed ID: 29896189 [No Abstract] [Full Text] [Related]