These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37958710)

  • 21. In vivo bone regeneration using a bioactive nanocomposite scaffold and human mesenchymal stem cells.
    Andalib N; Kehtari M; Seyedjafari E; Motamed N; Matin MM
    Cell Tissue Bank; 2021 Sep; 22(3):467-477. PubMed ID: 33398491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration.
    Martin V; Ribeiro IA; Alves MM; Gonçalves L; Claudio RA; Grenho L; Fernandes MH; Gomes P; Santos CF; Bettencourt AF
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():15-26. PubMed ID: 31029308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nano-hydroxyapatite mineralized silk fibroin porous scaffold for tooth extraction site preservation.
    Nie L; Zhang H; Ren A; Li Y; Fu G; Cannon RD; Ji P; Wu X; Yang S
    Dent Mater; 2019 Oct; 35(10):1397-1407. PubMed ID: 31395452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Healing potential of nanohydroxyapatite, gelatin, and fibrin-platelet glue combination as tissue engineered scaffolds in radial bone defects of rats.
    Meimandi-Parizi A; Oryan A; Gholipour H
    Connect Tissue Res; 2018 Jul; 59(4):332-344. PubMed ID: 29035127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration.
    Bahraminasab M; Doostmohammadi N; Talebi A; Arab S; Alizadeh A; Ghanbari A; Salati A
    Biomed Eng Online; 2022 Dec; 21(1):86. PubMed ID: 36503442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimizing Chitosan/Collagen Type I/Nanohydroxyapatite Cross-linked Porous Scaffolds for Bone Tissue Engineering.
    Karakeçili A; Korpayev S; Orhan K
    Appl Biochem Biotechnol; 2022 Sep; 194(9):3843-3859. PubMed ID: 35543856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Experimental study of repairing femoral bone defects with nHA/RHLC/PLA scaffold composite with endothelial cells and osteoblasts in canines].
    Lü YM; Cheng LM; Pei GX; Cai Z; Pan L; Su J; Zhang KH; Guo LL; Yu QS; Guo YR
    Zhonghua Yi Xue Za Zhi; 2013 May; 93(17):1335-40. PubMed ID: 24029485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration.
    Gleeson JP; Plunkett NA; O'Brien FJ
    Eur Cell Mater; 2010 Oct; 20():218-30. PubMed ID: 20922667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-Assembled Hydroxyapatite-Graphene Scaffold for Photothermal Cancer Therapy and Bone Regeneration.
    Li D; Nie W; Chen L; McCoul D; Liu D; Zhang X; Ji Y; Yu B; He C
    J Biomed Nanotechnol; 2018 Dec; 14(12):2003-2017. PubMed ID: 30305209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Collagen and nano-hydroxyapatite interactions in alginate-based microcapsule provide an appropriate osteogenic microenvironment for modular bone tissue formation.
    Hassani A; Khoshfetrat AB; Rahbarghazi R; Sakai S
    Carbohydr Polym; 2022 Feb; 277():118807. PubMed ID: 34893227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Vivo Biological Behavior of Polymer Scaffolds of Natural Origin in the Bone Repair Process.
    Cunha FB; Pomini KT; Plepis AMG; Martins VDCA; Machado EG; de Moraes R; Munhoz MAES; Machado MVR; Duarte MAH; Alcalde MP; Buchaim DV; Buchaim RL; Fernandes VAR; Pereira ESBM; Pelegrine AA; Cunha MRD
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33805847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair.
    Quinlan E; López-Noriega A; Thompson EM; Hibbitts A; Cryan SA; O'Brien FJ
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1097-1109. PubMed ID: 25783558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effectiveness of tissue engineered three-dimensional bioactive graft on bone healing and regeneration: an in vivo study with significant clinical value.
    Shahrezaie M; Moshiri A; Shekarchi B; Oryan A; Maffulli N; Parvizi J
    J Tissue Eng Regen Med; 2018 Apr; 12(4):936-960. PubMed ID: 28714236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Patient-Derived Human Induced Pluripotent Stem Cells From Gingival Fibroblasts Composited With Defined Nanohydroxyapatite/Chitosan/Gelatin Porous Scaffolds as Potential Bone Graft Substitutes.
    Ji J; Tong X; Huang X; Zhang J; Qin H; Hu Q
    Stem Cells Transl Med; 2016 Jan; 5(1):95-105. PubMed ID: 26586776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds.
    Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM
    Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration.
    Sun J; Li L; Xing F; Yang Y; Gong M; Liu G; Wu S; Luo R; Duan X; Liu M; Zou M; Xiang Z
    Stem Cell Res Ther; 2021 Dec; 12(1):591. PubMed ID: 34863288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomineralization inspired engineering of nanobiomaterials promoting bone repair.
    Oliveira FC; Carvalho JO; Magalhães LSSM; da Silva JM; Pereira SR; Gomes Júnior AL; Soares LM; Cariman LIC; da Silva RI; Viana BC; Silva-Filho EC; Afewerki S; da Cunha HN; Vega ML; Marciano FR; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111776. PubMed ID: 33545906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.