BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 37958775)

  • 1. The Warburg Effect Explained: Integration of Enhanced Glycolysis with Heterogeneous Mitochondria to Promote Cancer Cell Proliferation.
    Alberghina L
    Int J Mol Sci; 2023 Oct; 24(21):. PubMed ID: 37958775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warburg effect in Gynecologic cancers.
    Kobayashi Y; Banno K; Kunitomi H; Takahashi T; Takeda T; Nakamura K; Tsuji K; Tominaga E; Aoki D
    J Obstet Gynaecol Res; 2019 Mar; 45(3):542-548. PubMed ID: 30511455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overcoming the Warburg Effect: Is it the key to survival in sepsis?
    Bar-Or D; Carrick M; Tanner A; Lieser MJ; Rael LT; Brody E
    J Crit Care; 2018 Feb; 43():197-201. PubMed ID: 28915394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells.
    Yu C; Xue J; Zhu W; Jiao Y; Zhang S; Cao J
    Tumour Biol; 2015 Jan; 36(1):81-94. PubMed ID: 25431262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling core metabolism in cancer cells: surveying the topology underlying the Warburg effect.
    Resendis-Antonio O; Checa A; Encarnación S
    PLoS One; 2010 Aug; 5(8):e12383. PubMed ID: 20811631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Warburg effect: the metabolic requirements of cell proliferation.
    Vander Heiden MG; Cantley LC; Thompson CB
    Science; 2009 May; 324(5930):1029-33. PubMed ID: 19460998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells.
    Li X; Han G; Li X; Kan Q; Fan Z; Li Y; Ji Y; Zhao J; Zhang M; Grigalavicius M; Berge V; Goscinski MA; Nesland JM; Suo Z
    Oncotarget; 2017 Jul; 8(28):46363-46380. PubMed ID: 28624784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer.
    Li C; Zhang G; Zhao L; Ma Z; Chen H
    World J Surg Oncol; 2016 Jan; 14(1):15. PubMed ID: 26791262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Warburg effect and mitochondrial oxidative phosphorylation: Friends or foes?
    Martins Pinto M; Paumard P; Bouchez C; Ransac S; Duvezin-Caubet S; Mazat JP; Rigoulet M; Devin A
    Biochim Biophys Acta Bioenerg; 2023 Jan; 1864(1):148931. PubMed ID: 36367492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentative metabolism impedes p53-dependent apoptosis in a Crabtree-positive but not in Crabtree-negative yeast.
    Kumar A; Dandekar JU; Bhat PJ
    J Biosci; 2017 Dec; 42(4):585-601. PubMed ID: 29229877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic Glycolysis in the Brain: Warburg and Crabtree Contra Pasteur.
    Barros LF; Ruminot I; San Martín A; Lerchundi R; Fernández-Moncada I; Baeza-Lehnert F
    Neurochem Res; 2021 Jan; 46(1):15-22. PubMed ID: 31981059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drivers of the Warburg phenotype.
    Cairns RA
    Cancer J; 2015; 21(2):56-61. PubMed ID: 25815844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production.
    Schuster S; Boley D; Möller P; Stark H; Kaleta C
    Biochem Soc Trans; 2015 Dec; 43(6):1187-94. PubMed ID: 26614659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the Crabtree/Warburg effect in a dynamic perspective: a fitness advantage against sugar-induced cell death.
    de Alteriis E; Cartenì F; Parascandola P; Serpa J; Mazzoleni S
    Cell Cycle; 2018; 17(6):688-701. PubMed ID: 29509056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins.
    Esparza-Moltó PB; Cuezva JM
    Antioxid Redox Signal; 2020 Nov; 33(13):927-945. PubMed ID: 31910046
    [No Abstract]   [Full Text] [Related]  

  • 18. More Than Meets the Eye Regarding Cancer Metabolism.
    Kubicka A; Matczak K; Łabieniec-Watała M
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crucial players in glycolysis: Cancer progress.
    Abbaszadeh Z; Çeşmeli S; Biray Avcı Ç
    Gene; 2020 Feb; 726():144158. PubMed ID: 31629815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative Feedback of Glycolysis and Oxidative Phosphorylation: Mechanisms of and Reasons for It.
    Sokolov SS; Balakireva AV; Markova OV; Severin FF
    Biochemistry (Mosc); 2015 May; 80(5):559-64. PubMed ID: 26071773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.