These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 3795885)

  • 1. Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression.
    Holmes MH
    J Biomech Eng; 1986 Nov; 108(4):372-81. PubMed ID: 3795885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indentation analysis of biphasic articular cartilage: nonlinear phenomena under finite deformation.
    Suh JK; Spilker RL
    J Biomech Eng; 1994 Feb; 116(1):1-9. PubMed ID: 8189703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments.
    Ateshian GA; Warden WH; Kim JJ; Grelsamer RP; Mow VC
    J Biomech; 1997; 30(11-12):1157-64. PubMed ID: 9456384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues.
    Wilson W; van Donkelaar CC; Huyghe JM
    J Biomech Eng; 2005 Feb; 127(1):158-65. PubMed ID: 15868798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis.
    Mak AF
    Biorheology; 1986; 23(4):371-83. PubMed ID: 3779062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A linear viscoelastic biphasic model for soft tissues based on the Theory of Porous Media.
    Ehlers W; Markert B
    J Biomech Eng; 2001 Oct; 123(5):418-24. PubMed ID: 11601726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage.
    Holmes MH; Lai WM; Mow VC
    J Biomech Eng; 1985 Aug; 107(3):206-18. PubMed ID: 4046561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues.
    Zhu Y; Kang G; Yu C; Poh LH
    J Mech Behav Biomed Mater; 2016 Aug; 61():397-409. PubMed ID: 27108349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration.
    Holmes MH; Mow VC
    J Biomech; 1990; 23(11):1145-56. PubMed ID: 2277049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite deformation theory for cartilage and other soft hydrated connective tissues--I. Equilibrium results.
    Kwan MK; Lai WM; Mow VC
    J Biomech; 1990; 23(2):145-55. PubMed ID: 2312519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue.
    Hatami-Marbini H; Maulik R
    J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive stress relaxation behavior of articular cartilage and its effects on fluid pressure and solid displacement due to non-Newtonian flow.
    Farooq U; Siddique JI
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(2):161-172. PubMed ID: 33017177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain energy descriptions of biological swelling. I: Single fluid compartment models.
    Bogen DK
    J Biomech Eng; 1987 Aug; 109(3):252-6. PubMed ID: 3657114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of models for flow induced deformation of soft biological tissue.
    Barry SI; Aldis GK
    J Biomech; 1990; 23(7):647-54. PubMed ID: 2384480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A triphasic theory for the swelling and deformation behaviors of articular cartilage.
    Lai WM; Hou JS; Mow VC
    J Biomech Eng; 1991 Aug; 113(3):245-58. PubMed ID: 1921350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biphasic analysis of rat brain slices under creep indentation shows nonlinear tension-compression behavior.
    Wang R; Sarntinoranont M
    J Mech Behav Biomed Mater; 2019 Jan; 89():1-8. PubMed ID: 30236976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semianalytical Solution for the Deformation of an Elastic Layer under an Axisymmetrically Distributed Power-Form Load: Application to Fluid-Jet-Induced Indentation of Biological Soft Tissues.
    Lu M; Huang S; Yang X; Yang L; Mao R
    Biomed Res Int; 2017; 2017():9842037. PubMed ID: 28373991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A special theory of biphasic mixtures and experimental results for human annulus fibrosus tested in confined compression.
    Klisch SM; Lotz JC
    J Biomech Eng; 2000 Apr; 122(2):180-8. PubMed ID: 10834159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation.
    Berry GP; Bamber JC; Armstrong CG; Miller NR; Barbone PE
    Ultrasound Med Biol; 2006 Apr; 32(4):547-67. PubMed ID: 16616601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis of biological soft tissue surrounded by a deformable membrane that controls transmembrane flow.
    Hirabayashi S; Iwamoto M
    Theor Biol Med Model; 2018 Dec; 15(1):21. PubMed ID: 30348205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.