These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 37958885)
1. Antioxidant Iron Oxide Nanoparticles: Their Biocompatibility and Bioactive Properties. Lee J; Lee JH; Lee SY; Park SA; Kim JH; Hwang D; Kim KA; Kim HS Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958885 [TBL] [Abstract][Full Text] [Related]
2. Potential mechanism of gallic acid-coated iron oxide nanoparticles against associated genes of Klebsiella pneumoniae capsule, antibacterial and antibiofilm. Khaleel DS; Mutter TY; Huang X Microsc Res Tech; 2024 Nov; 87(11):2774-2784. PubMed ID: 38984399 [TBL] [Abstract][Full Text] [Related]
3. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses. Luo C; Li Y; Yang L; Wang X; Long J; Liu J Arch Toxicol; 2015 Mar; 89(3):357-69. PubMed ID: 24847785 [TBL] [Abstract][Full Text] [Related]
4. Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Ahamed M; Alhadlaq HA; Alam J; Khan MA; Ali D; Alarafi S Curr Pharm Des; 2013; 19(37):6681-90. PubMed ID: 23621530 [TBL] [Abstract][Full Text] [Related]
5. Iron oxide nanoparticles induced cytotoxicity, oxidative stress, cell cycle arrest, and DNA damage in human umbilical vein endothelial cells. Siddiqui MA; Wahab R; Saquib Q; Ahmad J; Farshori NN; Al-Sheddi ES; Al-Oqail MM; Al-Massarani SM; Al-Khedhairy AA J Trace Elem Med Biol; 2023 Dec; 80():127302. PubMed ID: 37734210 [TBL] [Abstract][Full Text] [Related]
6. Investigating the toxic mechanism of iron oxide nanoparticles-induced oxidative stress in tadpole (Duttaphrynus melanostictus): A combined biochemical and molecular study. Murthy MK; Khandayataray P; Mohanty CS; Pattanayak R Environ Toxicol Pharmacol; 2024 Apr; 107():104432. PubMed ID: 38554986 [TBL] [Abstract][Full Text] [Related]
7. Oocyte maturation, fertilization, and embryo development in vitro by green and chemical iron oxide nanoparticles: a comparative study. Nejadali Chaleshtari S; Amini E; Baniasadi F; Tavana S; Ghalamboran M Sci Rep; 2024 Jun; 14(1):14157. PubMed ID: 38898126 [TBL] [Abstract][Full Text] [Related]
8. Investigating the toxic effects induced by iron oxide nanoparticles on neuroblastoma cell line: an integrative study combining cytotoxic, genotoxic and proteomic tools. Askri D; Cunin V; Béal D; Berthier S; Chovelon B; Arnaud J; Rachidi W; Sakly M; Amara S; Sève M; Lehmann SG Nanotoxicology; 2019 Oct; 13(8):1021-1040. PubMed ID: 31132913 [TBL] [Abstract][Full Text] [Related]
9. Toxicity and biodistribution assessment of curcumin-coated iron oxide nanoparticles: Multidose administration. Aboushoushah S; Alshammari W; Darwesh R; Elbaily N Life Sci; 2021 Jul; 277():119625. PubMed ID: 34015288 [TBL] [Abstract][Full Text] [Related]
10. Hepatotoxic and Neurotoxic Potential of Iron Oxide Nanoparticles in Wistar Rats: a Biochemical and Ultrastructural Study. Mabrouk M; Ibrahim Fouad G; El-Sayed SAM; Rizk MZ; Beherei HH Biol Trace Elem Res; 2022 Aug; 200(8):3638-3665. PubMed ID: 34704196 [TBL] [Abstract][Full Text] [Related]
11. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes. Petters C; Thiel K; Dringen R Nanotoxicology; 2016; 10(3):332-42. PubMed ID: 26287375 [TBL] [Abstract][Full Text] [Related]
12. Fe Wang S; Li J; Chen L; Zeng J; Gao M J Phys Chem Lett; 2024 Aug; 15(34):8861-8866. PubMed ID: 39169277 [TBL] [Abstract][Full Text] [Related]
13. Interaction of Iron Oxide Nanoparticles with Macrophages Is Influenced Distinctly by "Self" and "Non-Self" Biological Identities. Portilla Y; Mulens-Arias V; Daviu N; Paradela A; Pérez-Yagüe S; Barber DF ACS Appl Mater Interfaces; 2023 Aug; 15(30):35906-35926. PubMed ID: 37478159 [TBL] [Abstract][Full Text] [Related]
14. Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. Xia Y; Chen H; Zhang F; Wang L; Chen B; Reynolds MA; Ma J; Schneider A; Gu N; Xu HHK Artif Cells Nanomed Biotechnol; 2018; 46(sup1):423-433. PubMed ID: 29355052 [TBL] [Abstract][Full Text] [Related]
15. Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles. Geppert M; Hohnholt MC; Nürnberger S; Dringen R Acta Biomater; 2012 Oct; 8(10):3832-9. PubMed ID: 22750736 [TBL] [Abstract][Full Text] [Related]
16. Macrophage functionality and homeostasis in response to oligoethyleneglycol-coated IONPs: Impact of a dendritic architecture. Casset A; Jouhannaud J; Garofalo A; Spiegelhalter C; Nguyen DV; Felder-Flesch D; Pourroy G; Pons F Int J Pharm; 2019 Feb; 556():287-300. PubMed ID: 30557682 [TBL] [Abstract][Full Text] [Related]
17. Assessing safety and protein interactions of surface-modified iron oxide nanoparticles for potential use in biomedical areas. Dyawanapelly S; Jagtap DD; Dandekar P; Ghosh G; Jain R Colloids Surf B Biointerfaces; 2017 Jun; 154():408-420. PubMed ID: 28388527 [TBL] [Abstract][Full Text] [Related]
18. Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes. Gaharwar US; Meena R; Rajamani P J Appl Toxicol; 2017 Oct; 37(10):1232-1244. PubMed ID: 28585739 [TBL] [Abstract][Full Text] [Related]
19. The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways. Kim E; Kim JM; Kim L; Choi SJ; Park IS; Han JY; Chu YC; Choi ES; Na K; Hong SS Int J Nanomedicine; 2016; 11():4595-4607. PubMed ID: 27695320 [TBL] [Abstract][Full Text] [Related]
20. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. Yarjanli Z; Ghaedi K; Esmaeili A; Rahgozar S; Zarrabi A BMC Neurosci; 2017 Jun; 18(1):51. PubMed ID: 28651647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]