These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37959430)

  • 1. Investigation of the Combined Influence of Temperature and Humidity on Fatigue Crack Growth Rate in Al6082 Alloy in a Coastal Environment.
    Alqahtani I; Starr A; Khan M
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled Effects of Temperature and Humidity on Fracture Toughness of Al-Mg-Si-Mn Alloy.
    Alqahtani I; Starr A; Khan M
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue Behavior and Fracture Surface Analysis of Corroded High-Strength Bridge Cable Wires.
    Liu Z; Guo T; Li W; Zhang Q; Cheng B; Correia J
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of Fracture Toughness of Pure Tungsten Using a Small-Sized Compact Tension Specimen.
    Kong BS; Shin JH; Jang C; Kim HC
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31935899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Fatigue Crack Growth in Biomedical Alloy Ti-27Nb.
    Amjad M; Badshah S; Rafique AF; Adil Khattak M; Khan RU; Abdullah Harasani WI
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture Toughness and Fatigue Crack Growth Analyses on a Biomedical Ti-27Nb Alloy under Constant Amplitude Loading Using Extended Finite Element Modelling.
    Abdellah MY; Alharthi H
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue Fracture Analysis on 2524 Aluminum Alloy with the Influence of Creep-Aging Forming Processes.
    Ma L; Liu C; Ma M; Wang Z; Wu D; Liu L; Song M
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Thermo-Mechanical Fatigue Life for Eutectic Al-Si Alloy by the Ultrasonic Melt Treatment.
    Wang M; Pang J; Liu X; Wang J; Liu Y; Li S; Zhang Z
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Study on Fatigue Crack Growth Rate of 4130X Material under Different Hydrogen Corrosion Conditions.
    Jiang S; Wang J; Zhao B; Zhang E
    Materials (Basel); 2024 Jan; 17(1):. PubMed ID: 38204109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue Crack Growth Behavior and Fracture Toughness of EH36 TMCP Steel.
    Zhu Q; Zhang P; Peng X; Yan L; Li G
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue Crack Growth Rate Description of RF-Plasma-Sprayed Refractory Metals and Alloys.
    Kovarik O; Cizek J; Klecka J
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Precipitate Microstructure Affecting Fatigue Behavior of 7020 Aluminum Alloy.
    Shan Z; Liu S; Ye L; Li Y; He C; Chen J; Tang J; Deng Y; Zhang X
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DIC-Based Study on Fatigue Damage Evolution in Pre-Corroded Aluminum Alloy 2024-T4.
    Song H; Liu C; Zhang H; Leen SB
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of moisture absorption on the fatigue crack propagation resistance of acrylic bone cement.
    Schmitt S; Krzypow DJ; Rimnac CM
    Biomed Tech (Berl); 2004 Mar; 49(3):61-5. PubMed ID: 15106900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects.
    Robertson SW; Ritchie RO
    Biomaterials; 2007 Feb; 28(4):700-9. PubMed ID: 17034845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Retrogression Time on the Fatigue Crack Growth Behavior of a Modified AA7475 Aluminum Alloy.
    Zheng X; Yang Y; Tang J; Han B; Xu Y; Zeng Y; Zhang Y
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomechanical characterization of alumina coatings grown on FeCrAl alloy by thermal oxidation.
    Frutos E; González-Carrasco JL; Polcar T
    J Mech Behav Biomed Mater; 2016 Apr; 57():310-20. PubMed ID: 26875145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after in situ Hydrogen Cathodic Charging for an X65 Pipeline Steel.
    Kyriakopoulou HP; Karmiris-Obratański P; Tazedakis AS; Daniolos NM; Dourdounis EC; Manolakos DE; Pantelis D
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32325971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Pre-Stress Magnitude on Fatigue Crack Growth Behavior of Al-Alloy.
    Zhang C; Song W; Wang Q; Liu W
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30042311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.