These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37959505)

  • 1. Reliability Analysis of PAUT Based on the Round-Robin Test for Pipe Welds with Thermal Fatigue Cracks.
    Kang D; Choi YM; Lee DM; Kim JB; Kim YK; Park TS; Park IK
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Flaw Detection Sensitivity of Phased Array Ultrasonics in Austenitic Steel Welds According to Inspection Conditions.
    Kim Y; Cho S; Park IK
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Experimental Study on Defect Detection of Anchor Bolts Using Non-Destructive Testing Techniques.
    Seo D; Kim J; Park S
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probability of detection of discontinuities by ultrasonic phased array inspection of 9% Ni steel joints welded with alloy 625 as the filler metal.
    Payão Filho JDC; Maia VP; Passos EKD; Gonzaga RS; Juliano DR
    Ultrasonics; 2022 Feb; 119():106582. PubMed ID: 34600427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive sensing of ultrasonic array data with full matrix capture in nozzle welds inspection.
    Xu Q; Wang H; Tian G; Ma X; Hu B; Chu J
    Ultrasonics; 2023 Sep; 134():107085. PubMed ID: 37392618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Selectivity imaging of the closed fatigue crack due to thermal environment using surface-acoustic-wave phased array (SAW PA).
    Ohara Y; Oshiumi T; Wu X; Uchimoto T; Takagi T; Tsuji T; Mihara T
    Ultrasonics; 2022 Feb; 119():106629. PubMed ID: 34700266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guided waves based diagnostic imaging of circumferential cracks in small-diameter pipe.
    Liu K; Wu Z; Jiang Y; Wang Y; Zhou K; Chen Y
    Ultrasonics; 2016 Feb; 65():34-42. PubMed ID: 26548527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual, Non-Destructive, and Destructive Investigations of Polyethylene Pipes with Inhomogeneous Carbon Black Distribution for Assessing Degradation of Structural Integrity.
    Kim T; Deveci S; Yang I; Stakenborghs B; Choi S
    Polymers (Basel); 2022 Mar; 14(5):. PubMed ID: 35267890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array.
    Xie R; Chen D; Pan M; Tian W; Wu X; Zhou W; Tang Y
    Sensors (Basel); 2015 Dec; 15(12):32138-51. PubMed ID: 26703608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image-based sizing of surface-breaking cracks by SH-wave array ultrasonic testing.
    Kimoto K; Ueno S; Hirose S
    Ultrasonics; 2006 Dec; 45(1-4):152-64. PubMed ID: 17005228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Line Inspection Tool with Eddy Current Instrumentation for Fatigue Crack Detection.
    Camerini C; Rebello JMA; Braga L; Santos R; Chady T; Psuj G; Pereira G
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29976845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue Testing of Pipeline Welds and Heat-Affected Zones in Pressurized Hydrogen Gas.
    Drexler ES; Slifka AJ; Amaro RL; Sowards JW; Connolly MJ; Martin ML; Lauria DS
    J Res Natl Inst Stand Technol; 2019; 124():1-19. PubMed ID: 34877160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards using convolutional neural network to locate, identify and size defects in phased array ultrasonic testing.
    Latête T; Gauthier B; Belanger P
    Ultrasonics; 2021 Aug; 115():106436. PubMed ID: 33873024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-destructive evaluation of depth of surface cracks using ultrasonic frequency analysis.
    Her SC; Lin ST
    Sensors (Basel); 2014 Sep; 14(9):17146-58. PubMed ID: 25225875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel ultrasonic non-destructive testing methodology to monitor fatigue crack growth in compact tension specimens.
    Abraham ST; Babu MN; Venkatraman B
    Rev Sci Instrum; 2023 Mar; 94(3):035108. PubMed ID: 37012745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D ultrasonic imaging of surface-breaking cracks using a linear array.
    Saini A; Lane CJL; Tu J; Xue H; Fan Z
    Ultrasonics; 2022 Sep; 125():106790. PubMed ID: 35835009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal quality enhancement using higher order wavelets for ultrasonic TOFD signals from austenitic stainless steel welds.
    Praveen A; Vijayarekha K; Abraham ST; Venkatraman B
    Ultrasonics; 2013 Sep; 53(7):1288-92. PubMed ID: 23623414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Destructive Inspection of High Temperature Piping Combining Ultrasound and Eddy Current Testing.
    Santos D; Machado MA; Monteiro J; Sousa JP; Proença CS; Crivellaro FS; Rosado LS; Santos TG
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.
    Ohara Y; Horinouchi S; Hashimoto M; Shintaku Y; Yamanaka K
    Ultrasonics; 2011 Aug; 51(6):661-6. PubMed ID: 21414647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.
    Dauskardt RH; Ritchie RO; Takemoto JK; Brendzel AM
    J Biomed Mater Res; 1994 Jul; 28(7):791-804. PubMed ID: 8083247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.