These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 37959515)

  • 41. Study of Fiber-Based Wearable Energy Systems.
    Tao X
    Acc Chem Res; 2019 Feb; 52(2):307-315. PubMed ID: 30698417
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Piezoelectric nanogenerators for self-powered wearable and implantable bioelectronic devices.
    Das KK; Basu B; Maiti P; Dubey AK
    Acta Biomater; 2023 Nov; 171():85-113. PubMed ID: 37673230
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Piezoelectric and Triboelectric Nanogenerators for Enhanced Wound Healing.
    Jang HJ; Tiruneh DM; Ryu H; Yoon JK
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999158
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent Advances in Flexible Wearable Supercapacitors: Properties, Fabrication, and Applications.
    Yan Z; Luo S; Li Q; Wu ZS; Liu SF
    Adv Sci (Weinh); 2024 Feb; 11(8):e2302172. PubMed ID: 37537662
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-performance piezoelectric nanogenerators for self-powered nanosystems: quantitative standards and figures of merit.
    Wu W
    Nanotechnology; 2016 Mar; 27(11):112503. PubMed ID: 26871611
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Review on Hydrogel-Based Flexible Supercapacitors for Wearable Applications.
    Tadesse MG; Lübben JF
    Gels; 2023 Jan; 9(2):. PubMed ID: 36826276
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability.
    Wu H; Huang Y; Xu F; Duan Y; Yin Z
    Adv Mater; 2016 Dec; 28(45):9881-9919. PubMed ID: 27677428
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design Principles for Manipulating Electrochemical Interfaces in Solid-State Supercapacitors for Wearable Applications.
    Jha MK; Subramaniam C
    ACS Omega; 2021 Mar; 6(12):7970-7978. PubMed ID: 33817455
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Progress in Piezoelectric Nanogenerators Based on PVDF Composite Films.
    Wang Y; Zhu L; Du C
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832688
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors.
    Wen Z; Yeh MH; Guo H; Wang J; Zi Y; Xu W; Deng J; Zhu L; Wang X; Hu C; Zhu L; Sun X; Wang ZL
    Sci Adv; 2016 Oct; 2(10):e1600097. PubMed ID: 27819039
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent Advances in Flexible Wearable Technology: From Textile Fibers to Devices.
    Zhao Y; Guo X; Sun H; Tao L
    Chem Rec; 2024 Mar; 24(3):e202300361. PubMed ID: 38362667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics.
    Huang X; Wang L; Wang H; Zhang B; Wang X; Stening RYZ; Sheng X; Yin L
    Small; 2020 Apr; 16(15):e1902827. PubMed ID: 31513333
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Superior piezoelectric performance of chemically synthesized transition metal dichalcogenide heterostructures for self-powered flexible piezoelectric nanogenerator.
    Bhattacharya D; Mukherjee S; Mitra RK; Ray SK
    Nanotechnology; 2023 Aug; 34(43):. PubMed ID: 37478833
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices.
    Zhou H; Zhang Y; Qiu Y; Wu H; Qin W; Liao Y; Yu Q; Cheng H
    Biosens Bioelectron; 2020 Nov; 168():112569. PubMed ID: 32905930
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Current Achievements in Flexible Piezoelectric Nanogenerators Based on Barium Titanate.
    Okhay O; Tkach A
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Keggin and Dawson polyoxometalates as electrodes for flexible and transparent piezoelectric nanogenerators to efficiently utilize mechanical energy in the environment.
    He P; Chen W; Li J; Zhang H; Li Y; Wang E
    Sci Bull (Beijing); 2020 Jan; 65(1):35-44. PubMed ID: 36659066
    [TBL] [Abstract][Full Text] [Related]  

  • 57. LiTaO
    Manchi P; Graham SA; Patnam H; Alluri NR; Kim SJ; Yu JS
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46526-46536. PubMed ID: 34546725
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stretchable V
    Qi R; Nie J; Liu M; Xia M; Lu X
    Nanoscale; 2018 Apr; 10(16):7719-7725. PubMed ID: 29658015
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polysaccharides and proteins-based nanogenerator for energy harvesting and sensing: A review.
    Cao L; Qiu X; Jiao Q; Zhao P; Li J; Wei Y
    Int J Biol Macromol; 2021 Mar; 173():225-243. PubMed ID: 33484800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Review of Polymer-Based Environment-Induced Nanogenerators: Power Generation Performance and Polymer Material Manipulations.
    Xie S; Yan H; Qi R
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.