These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 37959515)
61. A Review of Polymer-Based Environment-Induced Nanogenerators: Power Generation Performance and Polymer Material Manipulations. Xie S; Yan H; Qi R Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399933 [TBL] [Abstract][Full Text] [Related]
62. Flexible, Wearable Wireless-Charging Power System Incorporating Piezo-Ultrasonic Arrays and MXene-Based Solid-State Supercapacitors. Zhou Q; Zhu C; Xue H; Jiang L; Wu J ACS Appl Mater Interfaces; 2024 Jul; 16(27):35268-35278. PubMed ID: 38916408 [TBL] [Abstract][Full Text] [Related]
63. Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO Suo G; Yu Y; Zhang Z; Wang S; Zhao P; Li J; Wang X ACS Appl Mater Interfaces; 2016 Dec; 8(50):34335-34341. PubMed ID: 27936326 [TBL] [Abstract][Full Text] [Related]
64. A high performance lead-free flexible piezoelectric nanogenerator based on AlFeO Bhattacharyya D; Badhulika S Nanotechnology; 2023 Apr; 34(28):. PubMed ID: 37054702 [TBL] [Abstract][Full Text] [Related]
65. Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Vijayakanth T; Shankar S; Finkelstein-Zuta G; Rencus-Lazar S; Gilead S; Gazit E Chem Soc Rev; 2023 Aug; 52(17):6191-6220. PubMed ID: 37585216 [TBL] [Abstract][Full Text] [Related]
66. Quantum Dot Hybridization of Piezoelectric Polymer Films for Non-Transfer Integration of Flexible Biomechanical Energy Harvesters. Fu H; Long Z; Lai M; Cao J; Zhou R; Gong J; Chen Y ACS Appl Mater Interfaces; 2022 Jul; 14(26):29934-29944. PubMed ID: 35730788 [TBL] [Abstract][Full Text] [Related]
67. Performance-Improved Highly Integrated Uniaxial Tristate Hybrid Nanogenerator for Sustainable Mechanical Energy Harvesting. Khan AA; Saritas R; Rana MM; Tanguy N; Zhu W; Mei N; Kokilathasan S; Rassel S; Leonenko Z; Yan N; Abdel-Rahman E; Ban D ACS Appl Mater Interfaces; 2022 Jan; 14(3):4119-4131. PubMed ID: 35025196 [TBL] [Abstract][Full Text] [Related]
68. Natural Sugar-Assisted, Chemically Reinforced, Highly Durable Piezoorganic Nanogenerator with Superior Power Density for Self-Powered Wearable Electronics. Maity K; Garain S; Henkel K; Schmeißer D; Mandal D ACS Appl Mater Interfaces; 2018 Dec; 10(50):44018-44032. PubMed ID: 30456939 [TBL] [Abstract][Full Text] [Related]
69. Flexible piezoelectric nanogenerators based on a CdS nanowall for self-powered sensors. Zhang W; Yang H; Li L; Lin S; Ji P; Hu C; Zhang D; Xi Y Nanotechnology; 2020 Sep; 31(38):385401. PubMed ID: 32492669 [TBL] [Abstract][Full Text] [Related]
70. Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence. Yang Z; Zhu Z; Chen Z; Liu M; Zhao B; Liu Y; Cheng Z; Wang S; Yang W; Yu T Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960515 [TBL] [Abstract][Full Text] [Related]
71. Environmental energy harvesting based on triboelectric nanogenerators. Tian J; Chen X; Wang ZL Nanotechnology; 2020 Mar; 31(24):242001. PubMed ID: 32092711 [TBL] [Abstract][Full Text] [Related]
72. 1D Supercapacitors for Emerging Electronics: Current Status and Future Directions. Zhai S; Karahan HE; Wang C; Pei Z; Wei L; Chen Y Adv Mater; 2020 Feb; 32(5):e1902387. PubMed ID: 31304998 [TBL] [Abstract][Full Text] [Related]
73. Towards flexible solid-state supercapacitors for smart and wearable electronics. Dubal DP; Chodankar NR; Kim DH; Gomez-Romero P Chem Soc Rev; 2018 Mar; 47(6):2065-2129. PubMed ID: 29399689 [TBL] [Abstract][Full Text] [Related]
74. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting. Ryu H; Yoon HJ; Kim SW Adv Mater; 2019 Aug; 31(34):e1802898. PubMed ID: 30809883 [TBL] [Abstract][Full Text] [Related]
75. MXene-Based Nanocomposites for Piezoelectric and Triboelectric Energy Harvesting Applications. Pabba DP; Satthiyaraju M; Ramasdoss A; Sakthivel P; Chidhambaram N; Dhanabalan S; Abarzúa CV; Morel MJ; Udayabhaskar R; Mangalaraja RV; Aepuru R; Kamaraj SK; Murugesan PK; Thirumurugan A Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374858 [TBL] [Abstract][Full Text] [Related]
76. Recent trends in 2D materials and their polymer composites for effectively harnessing mechanical energy. Rana S; Singh V; Singh B iScience; 2022 Feb; 25(2):103748. PubMed ID: 35118361 [TBL] [Abstract][Full Text] [Related]
77. Sustainable and Biodegradable Wood Sponge Piezoelectric Nanogenerator for Sensing and Energy Harvesting Applications. Sun J; Guo H; Ribera J; Wu C; Tu K; Binelli M; Panzarasa G; Schwarze FWMR; Wang ZL; Burgert I ACS Nano; 2020 Nov; 14(11):14665-14674. PubMed ID: 32936611 [TBL] [Abstract][Full Text] [Related]
78. Washable All-in-One Self-Charging Power Unit Based on a Triboelectric Nanogenerator and Supercapacitor for Smart Textiles. Huang Y; Wang L; Li X; Yang X; Lü W Langmuir; 2023 Jun; 39(25):8855-8864. PubMed ID: 37312243 [TBL] [Abstract][Full Text] [Related]
79. Flexible Ferroelectret Polymer for Self-Powering Devices and Energy Storage Systems. Cao Y; Figueroa J; Pastrana JJ; Li W; Chen Z; Wang ZL; Sepúlveda N ACS Appl Mater Interfaces; 2019 May; 11(19):17400-17409. PubMed ID: 31002218 [TBL] [Abstract][Full Text] [Related]
80. Recent Advances in Carbon Nanotube-Based Energy Harvesting Technologies. Hu X; Bao X; Zhang M; Fang S; Liu K; Wang J; Liu R; Kim SH; Baughman RH; Ding J Adv Mater; 2023 Dec; 35(49):e2303035. PubMed ID: 37209369 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]