These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37959545)
1. Simulation of, Optimization of, and Experimentation with Small Heat Pipes Produced Using Selective Laser Melting Technology. Zhou J; Teng L; Shen Y; Jin Z Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959545 [TBL] [Abstract][Full Text] [Related]
2. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe. Zhao S; Xu G; Wang N; Zhang X Nanomaterials (Basel); 2018 Jan; 8(2):. PubMed ID: 29382094 [TBL] [Abstract][Full Text] [Related]
3. 3D printed aluminum flat heat pipes with micro grooves for efficient thermal management of high power LEDs. Chang C; Han Z; He X; Wang Z; Ji Y Sci Rep; 2021 Apr; 11(1):8255. PubMed ID: 33859317 [TBL] [Abstract][Full Text] [Related]
4. Design Concepts and Performance Characterization of Heat Pipe Wick Structures by LPBF Additive Manufacturing. Kappe K; Bihler M; Morawietz K; Hügenell PPC; Pfaff A; Hoschke K Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556735 [TBL] [Abstract][Full Text] [Related]
5. Fabrication and Thermal Performance of a Polymer-Based Flexible Oscillating Heat Pipe via 3D Printing Technology. Han Z; Chang C Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679294 [TBL] [Abstract][Full Text] [Related]
7. Analysis of temperature distribution over pipe surfaces of air-based cavity linear receiver for cross-linear concentration solar power system. Patel A; Soni A; Baredar P; Malviya R Environ Sci Pollut Res Int; 2023 Mar; 30(11):28621-28639. PubMed ID: 36396763 [TBL] [Abstract][Full Text] [Related]
8. Heat Transfer Performance of a 3D-Printed Aluminum Flat-Plate Oscillating Heat Pipe Finned Radiator. Xiao X; He Y; Wang Q; Yang Y; Chang C; Ji Y Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202515 [TBL] [Abstract][Full Text] [Related]
9. Heat Transfer Performance of 3D-Printed Aluminium Flat-Plate Oscillating Heat Pipes for the Thermal Management of LEDs. Chang C; Yang Y; Pei L; Han Z; Xiao X; Ji Y Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422378 [TBL] [Abstract][Full Text] [Related]
10. Simulation and validation of residual deformations in additive manufacturing of metal parts. Mayer T; Brändle G; Schönenberger A; Eberlein R Heliyon; 2020 May; 6(5):e03987. PubMed ID: 32478189 [TBL] [Abstract][Full Text] [Related]
11. Experimental study on the thermal performance of ultra-thin flat heat pipes with novel multiscale striped composite wick structures. Wang M; Yang Y; Sun Y; Li J; Hao M Heliyon; 2023 Oct; 9(10):e20840. PubMed ID: 37867792 [TBL] [Abstract][Full Text] [Related]
12. Additive Manufacturing as a Solution to Challenges Associated with Heat Pipe Production. Szymanski P; Mikielewicz D Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208149 [TBL] [Abstract][Full Text] [Related]
13. Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches. Ansari MJ; Nguyen DS; Park HS Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003432 [TBL] [Abstract][Full Text] [Related]
14. Numerical Simulation of the Evaporation Behavior of Fe-Mn Heterogeneous Powder in Selective Laser Melting Process. Ma X; Hou Y; Liu H; Qiu H; Li X Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730838 [TBL] [Abstract][Full Text] [Related]
15. The Dependence of Flue Pipe Airflow Parameters on the Proximity of an Obstacle to the Pipe's Mouth. Węgrzyn D; Wrzeciono P; Wieczorkowska A Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009552 [TBL] [Abstract][Full Text] [Related]
16. Novel Calibration Strategy for Validation of Finite Element Thermal Analysis of Selective Laser Melting Process Using Bayesian Optimization. Kusano M; Kitano H; Watanabe M Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501038 [TBL] [Abstract][Full Text] [Related]
17. Numerical and Experimental Study on Balanced Performance and Axial Stiffness of Fiber-Reinforced Rubber Pipe. You J; Zhao Y; Zhang B Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065405 [TBL] [Abstract][Full Text] [Related]
18. A critical review on renewable battery thermal management system using heat pipes. Afzal A; Abdul Razak RK; Mohammed Samee AD; Kumar R; Ağbulut Ü; Park SG J Therm Anal Calorim; 2023 May; ():1-40. PubMed ID: 37361725 [TBL] [Abstract][Full Text] [Related]
19. Research on the Manufacturing Process and Heat Transfer Performance of Ultra-Thin Heat Pipes: A Review. Duan L; Li H; Du J; Liu K; He W Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955400 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic Copper Forest Wick Enables High Thermal Conductivity Ultrathin Heat Pipe. Luo JL; Mo DC; Wang YQ; Lyu SS ACS Nano; 2021 Apr; 15(4):6614-6621. PubMed ID: 33792288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]