BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37959577)

  • 1. Cu and Ni Co-Doped Porous Si Nanowire Networks as High-Performance Anode Materials for Lithium-Ion Batteries.
    Mi C; Luo C; Wang Z; Zhang Y; Yang S; Wang Z
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous Si/Fe
    Chen Y; Yan Y; Liu X; Zhao Y; Wu X; Zhou J; Wang Z
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33255567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow Porous N and Co Dual-Doped Silicon@Carbon Nanocube Derived by ZnCo-Bimetallic Metal-Organic Framework toward Advanced Lithium-Ion Battery Anodes.
    Kim H; Baek J; Son DK; Ruby Raj M; Lee G
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45458-45475. PubMed ID: 36191137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Ni Doping Content on Phase Transition and Electrochemical Performance of TiO
    Kang D; Li J; Zhang Y
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A porous silicon anode prepared by dealloying a Sr-modified Al-Si eutectic alloy for lithium ion batteries.
    Jiang P; Li J
    RSC Adv; 2022 Mar; 12(13):7892-7897. PubMed ID: 35424722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titanium Monoxide-Stabilized Silicon Nanoparticles with a Litchi-like Structure as an Advanced Anode for Li-ion Batteries.
    Hu J; Wang Q; Fu L; Rajagopalan R; Cui Y; Chen H; Yuan H; Tang Y; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48467-48475. PubMed ID: 33052650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Si/Fe
    Yan Y; Chen Y; Li Y; Wu X; Jin C; Wang Z
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the Cycling Stability of Fe
    Zhang X; Liu X; Zhou J; Qin C; Wang Z
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32967244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous Si-Cu
    Pei S; Guo J; He Z; Huang LA; Lu T; Gong J; Shao H; Wang J
    Chemistry; 2020 May; 26(27):6006-6016. PubMed ID: 32073696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous Si/Cu Anode with High Initial Coulombic Efficiency and Volumetric Capacity by Comprehensive Utilization of Laser Additive Manufacturing-Chemical Dealloying.
    Cao L; Huang T; Zhang Q; Cui M; Xu J; Xiao R
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57071-57078. PubMed ID: 33259713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of a Si/SiO
    Zeng L; Liu R; Han L; Luo F; Chen X; Wang J; Qian Q; Chen Q; Wei M
    Chemistry; 2018 Apr; 24(19):4841-4848. PubMed ID: 29194824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and Characterization of Zinc/Iron Composite Oxide Heterojunction Porous Anode Materials for High-Performance Lithium-Ion Batteries.
    Wang R; Wang Y; Xiong W; Liu J; Li H
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the rate capacity and cycle stability of FeP anodes for lithium-ion batteries via in situ carbon encapsulation and copper doping.
    Lin X; Ke Y; Peng X; He C; Zhao X; Xiao X; Lin X; Nan J
    J Colloid Interface Sci; 2023 Mar; 634():346-356. PubMed ID: 36535170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen-doped porous carbon microspheres for high-rate anode material in lithium-ion batteries.
    Gao Y; Qiu X; Wang X; Chen X; Gu A; Yu Z
    Nanotechnology; 2020 Apr; 31(15):155702. PubMed ID: 31860901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries.
    Huang S; Cheong LZ; Wang D; Shen C
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23672-23678. PubMed ID: 28661118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes.
    Zhang C; Ma Q; Cai M; Zhao Z; Xie H; Ning Z; Wang D; Yin H
    Waste Manag; 2021 Nov; 135():182-189. PubMed ID: 34509770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Stable Core-Shell Si@SiO
    Li X; Zhang W; Wang X; Teng W; Nan D; Dong J; Bai L; Liu J
    Front Chem; 2022; 10():857036. PubMed ID: 35355786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and Electrochemical Characterization of Si@C Nanoparticles as an Anode Material for Lithium-Ion Batteries via Solvent-Assisted Wet Coating Process.
    Hwang J; Jung M; Park JJ; Kim EK; Lee G; Lee KJ; Choi JH; Song WJ
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Design of Ion-Conductive Layer on Si Anode Enables Superior-Stable Lithium-Ion Batteries.
    Wang Z; Yao M; Luo H; Xu C; Tian H; Wang Q; Wu H; Zhang Q; Wu Y
    Small; 2024 Feb; 20(5):e2306428. PubMed ID: 37759404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.