These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37959603)

  • 1. Mesoscopic Simulation of Core-Shell Composite Powder Materials by Selective Laser Melting.
    Bao T; Tan Y; Xu Y
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches.
    Ansari MJ; Nguyen DS; Park HS
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Numerical Study on the Mesoscopic Characteristics of Ti-6Al-4V by Selective Laser Melting.
    Ao X; Liu J; Xia H; Yang Y
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Simulation of the Evaporation Behavior of Fe-Mn Heterogeneous Powder in Selective Laser Melting Process.
    Ma X; Hou Y; Liu H; Qiu H; Li X
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reuse of Ti6Al4V Powder and Its Impact on Surface Tension, Melt Pool Behavior and Mechanical Properties of Additively Manufactured Components.
    Skalon M; Meier B; Leitner T; Arneitz S; Amancio-Filho ST; Sommitsch C
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Particle Size Distribution with Efficient Packing on Powder Flowability and Selective Laser Melting Process.
    Young Z; Qu M; Coday MM; Guo Q; Hojjatzadeh SMH; Escano LI; Fezzaa K; Chen L
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermo-Fluid-Dynamic Modeling of the Melt Pool during Selective Laser Melting for AZ91D Magnesium Alloy.
    Shen H; Yan J; Niu X
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32962085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainties Induced by Processing Parameter Variation in Selective Laser Melting of Ti6Al4V Revealed by In-Situ X-ray Imaging.
    Young ZA; Coday MM; Guo Q; Qu M; Hojjatzadeh SMH; Escano LI; Fezzaa K; Sun T; Chen L
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Thermo-Mechanical Coupling Effect in Selective Laser Melting of Aluminum Alloy Powder.
    Duan X; Chen X; Zhu K; Long T; Huang S; Jerry FYH
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33805355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Simulation in the Melt Pool Evolution of Laser Powder Bed Fusion Process for Ti6Al4V.
    Xu Y; Zhang D; Deng J; Wu X; Li L; Xie Y; Poprawe R; Schleifenbaum JH; Ziegler S
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the Numerical Simulation of the SLM Molten Pool Dynamic Behavior of a Nickel-Based Superalloy on the Workpiece Scale.
    Cao L; Yuan X
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Multi-Track and Multi-Layer Epitaxy Grain Growth Simulations of Selective Laser Melting.
    Dezfoli ARA; Lo YL; Raza MM
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat Source Modeling in Selective Laser Melting.
    Mirkoohi E; Seivers DE; Garmestani H; Liang SY
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31247957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties.
    Trevisan F; Calignano F; Lorusso M; Pakkanen J; Aversa A; Ambrosio EP; Lombardi M; Fino P; Manfredi D
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparative Analysis of Laser Additive Manufacturing of High Layer Thickness Pure Ti and Inconel 718 Alloy Materials Using Finite Element Method.
    Singh SN; Chowdhury S; Nirsanametla Y; Deepati AK; Prakash C; Singh S; Wu LY; Zheng HY; Pruncu C
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Overview of Additive Manufacturing Technologies-A Review to Technical Synthesis in Numerical Study of Selective Laser Melting.
    Razavykia A; Brusa E; Delprete C; Yavari R
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32899260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing.
    Zhang Z; Zhang T; Sun C; Karna S; Yuan L
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Powder Characteristics on Processability of AlSi12 Alloy Fabricated by Selective Laser Melting.
    Baitimerov R; Lykov P; Zherebtsov D; Radionova L; Shultc A; Prashanth KG
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29735932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Hatch Spacing on Melt Pool and As-built Quality During Selective Laser Melting of Stainless Steel: Modeling and Experimental Approaches.
    Dong Z; Liu Y; Wen W; Ge J; Liang J
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30586893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties.
    Tan C; Zhou K; Ma W; Attard B; Zhang P; Kuang T
    Sci Technol Adv Mater; 2018; 19(1):370-380. PubMed ID: 29707073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.