These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 37959931)
1. Obtaining Cellulose Nanocrystals from Olive Tree Pruning Waste and Evaluation of Their Influence as a Reinforcement on Biocomposites. Jurado-Contreras S; Navas-Martos FJ; García-Ruiz Á; Rodríguez-Liébana JA; La Rubia MD Polymers (Basel); 2023 Oct; 15(21):. PubMed ID: 37959931 [TBL] [Abstract][Full Text] [Related]
2. Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Sung SH; Chang Y; Han J Carbohydr Polym; 2017 Aug; 169():495-503. PubMed ID: 28504172 [TBL] [Abstract][Full Text] [Related]
3. Development of PLA-Waste Paper Biocomposites with High Cellulose Content. Delgado-Orti C; Navas-Martos FJ; Rodríguez-Liébana JA; La Rubia MD; Jurado-Contreras S Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065317 [TBL] [Abstract][Full Text] [Related]
4. Poly(lactic acid)/cellulose nanocrystal composites via the Pickering emulsion approach: Rheological, thermal and mechanical properties. Zhang Y; Cui L; Xu H; Feng X; Wang B; Pukánszky B; Mao Z; Sui X Int J Biol Macromol; 2019 Sep; 137():197-204. PubMed ID: 31255621 [TBL] [Abstract][Full Text] [Related]
5. Functionalization of cellulose nanocrystals extracted from pineapple leaves as a UV-absorbing agent in poly(lactic acid). Pornbencha K; Sringam S; Piyanirund S; Seubsai A; Prapainainar P; Niumnuy C; Roddecha S; Dittanet P RSC Adv; 2023 May; 13(22):15311-15321. PubMed ID: 37213346 [TBL] [Abstract][Full Text] [Related]
6. Strong, bacteriostatic and transparent polylactic acid-based composites by incorporating quaternary ammonium cellulose nanocrystals. Wang Q; Liu S; Chen W; Ni Y; Zeng S; Chen P; Xu Y; Nie W; Zhou Y Int J Biol Macromol; 2024 Aug; 274(Pt 1):132645. PubMed ID: 38917581 [TBL] [Abstract][Full Text] [Related]
7. Effect of Olive Pit Reinforcement in Polylactic Acid Biocomposites on Environmental Degradation. Jurado-Contreras S; Navas-Martos FJ; Rodríguez-Liébana JA; La Rubia MD Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687509 [TBL] [Abstract][Full Text] [Related]
8. Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Shi Q; Zhou C; Yue Y; Guo W; Wu Y; Wu Q Carbohydr Polym; 2012 Sep; 90(1):301-8. PubMed ID: 24751045 [TBL] [Abstract][Full Text] [Related]
9. Improvement of polylactic acid film properties through the addition of cellulose nanocrystals isolated from waste cotton cloth. Wang Z; Yao Z; Zhou J; He M; Jiang Q; Li A; Li S; Liu M; Luo S; Zhang D Int J Biol Macromol; 2019 May; 129():878-886. PubMed ID: 30735776 [TBL] [Abstract][Full Text] [Related]
10. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Zhang X; Zhang Y Carbohydr Polym; 2016 Apr; 140():374-82. PubMed ID: 26876864 [TBL] [Abstract][Full Text] [Related]
12. Bioactive Cellulose Nanocrystal-Poly(ε-Caprolactone) Nanocomposites for Bone Tissue Engineering Applications. Hong JK; Cooke SL; Whittington AR; Roman M Front Bioeng Biotechnol; 2021; 9():605924. PubMed ID: 33718336 [TBL] [Abstract][Full Text] [Related]
13. Evaluating the reinforcing potential of enzymatic cellulose nanocrystals in polypropylene nanocomposite. Benini KCCC; Arantes V Carbohydr Res; 2024 Aug; 542():109171. PubMed ID: 38875904 [TBL] [Abstract][Full Text] [Related]
14. Well-dispersed cellulose nanocrystals in hydrophobic polymers by in situ polymerization for synthesizing highly reinforced bio-nanocomposites. Geng S; Wei J; Aitomäki Y; Noël M; Oksman K Nanoscale; 2018 Jul; 10(25):11797-11807. PubMed ID: 29675528 [TBL] [Abstract][Full Text] [Related]
15. Physicochemical Properties of Cellulose Nanocrystals Extracted from Postconsumer Polyester/Cotton-Blended Fabrics and Their Effects on PVA Composite Films. Baloyi RB; Sithole BB; Chunilall V Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891442 [TBL] [Abstract][Full Text] [Related]
16. Nanocomposites of LLDPE and Surface-Modified Cellulose Nanocrystals Prepared by Melt Processing. Anžlovar A; Kunaver M; Krajnc A; Žagar E Molecules; 2018 Jul; 23(7):. PubMed ID: 30029544 [TBL] [Abstract][Full Text] [Related]
17. Morphological, Spectroscopic and Thermal Analysis of Cellulose Nanocrystals Extracted from Waste Jute Fiber by Acid Hydrolysis. Rana MS; Rahim MA; Mosharraf MP; Tipu MFK; Chowdhury JA; Haque MR; Kabir S; Amran MS; Chowdhury AA Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987310 [TBL] [Abstract][Full Text] [Related]
18. Impact and Tensile Properties of Polyester Nanocomposites Reinforced with Conifer Fiber Cellulose Nanocrystal: A Previous Study Extension. Maradini GDS; Oliveira MP; Carreira LG; Guimarães D; Profeti D; Dias Júnior AF; Boschetti WTN; Oliveira BF; Pereira AC; Monteiro SN Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34198848 [TBL] [Abstract][Full Text] [Related]
19. Polylactic Acid Cellulose Nanocomposite Films Comprised of Wood and Tunicate CNCs Modified with Tannic Acid and Octadecylamine. Dunlop MJ; Sabo R; Bissessur R; Acharya B Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771218 [TBL] [Abstract][Full Text] [Related]
20. Sulfonated cellulose nanocrystal modified with ammonium salt as reinforcement in poly(lactic acid) composite films. Liang G; Zong Y; Zou Y; Pang X; Zeng W; Zhu J; Yang S; Zhu Y Int J Biol Macromol; 2024 Mar; 261(Pt 1):129673. PubMed ID: 38281528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]