BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37959931)

  • 21. Evaluating the reinforcing potential of enzymatic cellulose nanocrystals in polypropylene nanocomposite.
    Benini KCCC; Arantes V
    Carbohydr Res; 2024 May; 542():109171. PubMed ID: 38875904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites.
    El Achaby M; Kassab Z; Aboulkas A; Gaillard C; Barakat A
    Int J Biol Macromol; 2018 Jan; 106():681-691. PubMed ID: 28823511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellulose Isolated From Waste Rubber Wood and Its Application in PLA Based Composite Films.
    Ou Z; Zhou Q; Rao X; Yang H; Huo C; Du X
    Front Bioeng Biotechnol; 2021; 9():666399. PubMed ID: 33869162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphology and mechanical properties of poly(ethylene brassylate)/cellulose nanocrystal composites.
    Butron A; Llorente O; Fernandez J; Meaurio E; Sarasua JR
    Carbohydr Polym; 2019 Oct; 221():137-145. PubMed ID: 31227152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanocrystalline cellulose derived from spruce wood: Influence of process parameters.
    Kumar P; Miller K; Kermanshahi-Pour A; Brar SK; Beims RF; Xu CC
    Int J Biol Macromol; 2022 Nov; 221():426-434. PubMed ID: 36084872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellulose Nanocrystals vs. Cellulose Nanofibers: A Comparative Study of Reinforcing Effects in UV-Cured Vegetable Oil Nanocomposites.
    Barkane A; Kampe E; Platnieks O; Gaidukovs S
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ Cellulose Nanocrystal-Reinforced Glycerol-Based Biopolyester for Enhancing Poly(lactic acid) Biocomposites.
    Brown E; Abdelwahab M; Valerio O; Misra M; Mohanty AK
    ACS Omega; 2018 Apr; 3(4):3857-3867. PubMed ID: 31458627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties.
    Lizundia E; Fortunati E; Dominici F; Vilas JL; León LM; Armentano I; Torre L; Kenny JM
    Carbohydr Polym; 2016 May; 142():105-13. PubMed ID: 26917380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-situ formation of thermo-responsive petal-like cellulose nanocrystals hybridized particles towards optimizing mechanical, rheological and dielectric properties of polylactic acid blends.
    Cheng B; Yan S; Chu W; Yang S; Zheng L; Tan Y; Yin X
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126470. PubMed ID: 37625750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.
    Arrieta MP; Fortunati E; Dominici F; Rayón E; López J; Kenny JM
    Carbohydr Polym; 2014 Jul; 107():16-24. PubMed ID: 24702913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of Epoxidized Canola Oil (eCO) and Cellulose Nanocrystals (CNCs) on the Mechanical and Thermal Properties of Polyhydroxybutyrate (PHB)-Poly(lactic acid) (PLA) Blends.
    Lopera-Valle A; Caputo JV; Leão R; Sauvageau D; Luz SM; Elias A
    Polymers (Basel); 2019 May; 11(6):. PubMed ID: 31146438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative evaluation of cellulose nanocrystals from bagasse and coir agro-wastes for reinforcing PVA-based composites.
    Pavalaydon K; Ramasawmy H; Surroop D
    Environ Dev Sustain; 2022; 24(8):9963-9984. PubMed ID: 34629941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellulose Nanocrystals (CNCs) from Corn Stalk: Activation Energy Analysis.
    Huang S; Zhou L; Li MC; Wu Q; Zhou D
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic Cellulose Nanocrystal Based Anisotropic Polylactic Acid Nanocomposite Films: Influence on Electrical, Magnetic, Thermal, and Mechanical Properties.
    Dhar P; Kumar A; Katiyar V
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18393-409. PubMed ID: 27331248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between Structural Characteristics of Cellulose Nanocrystals Obtained from Kraft Pulp.
    Aguayo MG; Fernández-Pérez A; Oviedo C; Reyes G; Reyes-Contreras P
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32911746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films.
    Sullivan EM; Moon RJ; Kalaitzidou K
    Materials (Basel); 2015 Dec; 8(12):8106-8116. PubMed ID: 28793701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile extraction and characterization of cellulose nanocrystals from agricultural waste sugarcane straw.
    Lu S; Ma T; Hu X; Zhao J; Liao X; Song Y; Hu X
    J Sci Food Agric; 2022 Jan; 102(1):312-321. PubMed ID: 34096072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of Poly(3-hydroxybutyrate-
    Voronova MI; Gurina DL; Surov OV
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D printing of cellulose nanocrystals based composites to build robust biomimetic scaffolds for bone tissue engineering.
    N'Gatta KM; Belaid H; El Hayek J; Assanvo EF; Kajdan M; Masquelez N; Boa D; Cavaillès V; Bechelany M; Salameh C
    Sci Rep; 2022 Dec; 12(1):21244. PubMed ID: 36482172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.