These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 3796000)
1. A simple physical model for fungicide induced hexagonal clustering of intramembrane particles in the plasmalemma of Ustilago avenae. Hippe S; Lüth H J Theor Biol; 1986 Aug; 121(3):351-66. PubMed ID: 3796000 [TBL] [Abstract][Full Text] [Related]
2. Combined application of low temperature preparation and electron microscopic autoradiography for the localization of systemic fungicides. Hippe S Histochemistry; 1987; 87(4):309-15. PubMed ID: 3692914 [TBL] [Abstract][Full Text] [Related]
3. Mode of action of the azasteroid antibiotic 15-aza-24 methylene-d-homocholesta-8,14-dien-3 beta-ol in Ustilago maydis. Woloshuk CP; Sisler HD; Dutky SR Antimicrob Agents Chemother; 1979 Jul; 16(1):81-97. PubMed ID: 383015 [TBL] [Abstract][Full Text] [Related]
4. Freeze-fracture scanning electron microscopy and comparative freeze-etching study of parallel fiber-Purkinje spine synapses of vertebrate cerebellar cortex. Castejón OJ J Submicrosc Cytol Pathol; 1990 Apr; 22(2):281-95. PubMed ID: 2337890 [TBL] [Abstract][Full Text] [Related]
5. Influence of chitosan and its derivatives on cell development and physiology of Ustilago maydis. Olicón-Hernández DR; Hernández-Lauzardo AN; Pardo JP; Peña A; Velázquez-del Valle MG; Guerra-Sánchez G Int J Biol Macromol; 2015 Aug; 79():654-60. PubMed ID: 26047896 [TBL] [Abstract][Full Text] [Related]
6. The planar distributions of surface proteins and intramembrane particles in Acholeplasma laidlawii are differentially affected by the physical state of membrane lipids. Wallace BA; Engelman DM Biochim Biophys Acta; 1978 Apr; 508(3):431-49. PubMed ID: 638151 [TBL] [Abstract][Full Text] [Related]
7. [Mechanism of action of the systemic fungicide carboxine]. Lyr H; Ritter G; Casperson G Z Allg Mikrobiol; 1972; 12(4):271-80. PubMed ID: 5071608 [No Abstract] [Full Text] [Related]
8. A gradient in the density of intramembrane particles is formed during capping induced by concanavalin A. Bennett H; Condeelis J J Cell Sci; 1986 Jul; 83():61-76. PubMed ID: 3805146 [TBL] [Abstract][Full Text] [Related]
9. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. Verbavatz JM; Brown D; Sabolić I; Valenti G; Ausiello DA; Van Hoek AN; Ma T; Verkman AS J Cell Biol; 1993 Nov; 123(3):605-18. PubMed ID: 7693713 [TBL] [Abstract][Full Text] [Related]
10. Effects of miconazole and dodecylimidazole on sterol biosynthesis in Ustilago maydis. Henry MJ; Sisler HD Antimicrob Agents Chemother; 1979 Apr; 15(4):603-7. PubMed ID: 464593 [TBL] [Abstract][Full Text] [Related]
11. Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits. Raviola E; Gilula NB J Cell Biol; 1975 Apr; 65(1):192-222. PubMed ID: 1127010 [TBL] [Abstract][Full Text] [Related]
12. Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. Dufourcq J; Faucon JF; Fourche G; Dasseux JL; Le Maire M; Gulik-Krzywicki T Biochim Biophys Acta; 1986 Jul; 859(1):33-48. PubMed ID: 3718985 [TBL] [Abstract][Full Text] [Related]
13. Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Radolf JD; Norgard MV; Schulz WW Proc Natl Acad Sci U S A; 1989 Mar; 86(6):2051-5. PubMed ID: 2648388 [TBL] [Abstract][Full Text] [Related]
14. Freeze-fracture study of the intramembrane particle density in the aortic smooth muscle cell plasmalemma of rabbits fed an atherogenic diet. Gendre PM; Bounader-Bechennec FM Atherosclerosis; 1989 Mar; 76(1):1-7. PubMed ID: 2920061 [TBL] [Abstract][Full Text] [Related]
15. A freeze-fracture study of the membrane morphology of phosphatidylethanolamine-deficient Escherichia coli cells. Rietveld AG; Verkleij AJ; de Kruijff B Biochim Biophys Acta; 1997 Mar; 1324(2):263-72. PubMed ID: 9092713 [TBL] [Abstract][Full Text] [Related]
16. Surface and membrane morphology of Bergmann glial cells and their topographic relationships in the cerebellar molecular layer. Castejón OJ J Submicrosc Cytol Pathol; 1990 Jan; 22(1):123-34. PubMed ID: 2311096 [TBL] [Abstract][Full Text] [Related]
17. Calorimetric and freeze fracture analysis of lipid phase transitions and lateral translational motion of intramembrane particles in mitochondrial membranes. Hackenbrock CR; Höchli M; Chau RM Biochim Biophys Acta; 1976 Dec; 455(2):466-84. PubMed ID: 999923 [TBL] [Abstract][Full Text] [Related]
18. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Venturoli M; Smit B; Sperotto MM Biophys J; 2005 Mar; 88(3):1778-98. PubMed ID: 15738466 [TBL] [Abstract][Full Text] [Related]
19. Protection of Ustilago violacea from toluidine blue photosensitization and hydrogen peroxide induced killing and mitotic recombination by carotenes. Will OH; Sawtelle DE; Iverson P; Jorve K Photochem Photobiol; 1988 Sep; 48(3):305-9. PubMed ID: 3222340 [No Abstract] [Full Text] [Related]
20. Phagocytosis of bacteria by polymorphonuclear leukocytes. A freeze-fracture, scanning electron microscope, and thin-section investigation of membrane structure. Moore PL; Bank HL; Brissie NT; Spicer SS J Cell Biol; 1978 Jan; 76(1):158-74. PubMed ID: 338617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]