BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 37960402)

  • 21. Fault Diagnosis for High-Speed Train Axle-Box Bearing Using Simplified Shallow Information Fusion Convolutional Neural Network.
    Luo H; Bo L; Peng C; Hou D
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel End-To-End Fault Diagnosis Approach for Rolling Bearings by Integrating Wavelet Packet Transform into Convolutional Neural Network Structures.
    Xiong S; Zhou H; He S; Zhang L; Xia Q; Xuan J; Shi T
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fault diagnosis of rolling bearings using an Improved Multi-Scale Convolutional Neural Network with Feature Attention mechanism.
    Xu Z; Li C; Yang Y
    ISA Trans; 2021 Apr; 110():379-393. PubMed ID: 33158549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Power Equipment Fault Diagnosis Method Based on Energy Spectrogram and Deep Learning.
    Liu Y; Li F; Guan Q; Zhao Y; Yan S
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder.
    Shi H; Chen J; Si J; Zheng C
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bearing Fault Diagnosis Method Based on Convolutional Neural Network and Knowledge Graph.
    Li Z; Li Y; Sun Q; Qi B
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36359679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lightweight Ghost Enhanced Feature Attention Network: An Efficient Intelligent Fault Diagnosis Method under Various Working Conditions.
    Dong H; Zheng K; Wen S; Zhang Z; Li Y; Zhu B
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective kernel convolution deep residual network based on channel-spatial attention mechanism and feature fusion for mechanical fault diagnosis.
    Zhang S; Liu Z; Chen Y; Jin Y; Bai G
    ISA Trans; 2023 Feb; 133():369-383. PubMed ID: 35798589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compound Fault Feature Extraction of Rolling Bearing Acoustic Signals Based on AVMD-IMVO-MCKD.
    Wu S; Zhou J; Liu T
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rolling Bearing Fault Diagnosis Based on Markov Transition Field and Residual Network.
    Yan J; Kan J; Luo H
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fusion of Audio and Vibration Signals for Bearing Fault Diagnosis Based on a Quadratic Convolution Neural Network.
    Yan J; Liao JB; Gao JY; Zhang WW; Huang CM; Yu HL
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Bearing Fault Classification Framework Based on Image Encoding Techniques and a Convolutional Neural Network under Different Operating Conditions.
    Toma RN; Piltan F; Im K; Shon D; Yoon TH; Yoo DS; Kim JM
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intelligent Rolling Bearing Fault Diagnosis Method Using Symmetrized Dot Pattern Images and CBAM-DRN.
    Cui W; Meng G; Gou T; Wang A; Xiao R; Zhang X
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchical Amplitude-Aware Permutation Entropy-Based Fault Feature Extraction Method for Rolling Bearings.
    Li Z; Cui Y; Li L; Chen R; Dong L; Du J
    Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Deep Learning Method for Bearing Cross-Domain Fault Diagnostics Based on the Standard Envelope Spectrum.
    Zhai L; Wang X; Si Z; Wang Z
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel stochastic resonance based deep residual network for fault diagnosis of rolling bearing system.
    Zhang X; Ma Y; Pan Z; Wang G
    ISA Trans; 2024 May; 148():279-284. PubMed ID: 38582635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet.
    Lin SL
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Deep Learning Method for Rolling Bearing Fault Diagnosis Based on Attention Mechanism and Graham Angle Field.
    Lu J; Wang K; Chen C; Ji W
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network.
    Zhang X; Li J; Wu W; Dong F; Wan S
    Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supervised Manifold Learning Based on Multi-Feature Information Discriminative Fusion within an Adaptive Nearest Neighbor Strategy Applied to Rolling Bearing Fault Diagnosis.
    Wang H; Yao L; Wang H; Liu Y; Li Z; Wang D; Hu R; Tao L
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.