BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37960441)

  • 21. Trajectory-level fog detection based on in-vehicle video camera with TensorFlow deep learning utilizing SHRP2 naturalistic driving data.
    Khan MN; Ahmed MM
    Accid Anal Prev; 2020 Jul; 142():105521. PubMed ID: 32408146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Convolutional Neural Network for Drowsiness Detection Using EEG Signals.
    Chaabene S; Bouaziz B; Boudaya A; Hökelmann A; Ammar A; Chaari L
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33802357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Hybrid Model for Driver Emotion Detection Using Feature Fusion Approach.
    Sukhavasi SB; Sukhavasi SB; Elleithy K; El-Sayed A; Elleithy A
    Int J Environ Res Public Health; 2022 Mar; 19(5):. PubMed ID: 35270777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A portable device for real time drowsiness detection using novel active dry electrode system.
    Tsai PY; Hu W; Kuo TB; Shyu LY
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3775-8. PubMed ID: 19964814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Connectivity-Aware Graph Neural Network for Real-Time Drowsiness Classification.
    Zhuang Z; Wang YK; Chang YC; Liu J; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():83-93. PubMed ID: 38010936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Driver sleepiness detection with deep neural networks using electrophysiological data.
    Hultman M; Johansson I; Lindqvist F; Ahlström C
    Physiol Meas; 2021 Apr; 42(3):. PubMed ID: 33621961
    [No Abstract]   [Full Text] [Related]  

  • 27. Critical safety management driver identification based upon temporal variation characteristics of driving behavior.
    Zhang R; Wen X; Cao H; Cui P; Chai H; Hu R; Yu R
    Accid Anal Prev; 2023 Dec; 193():107307. PubMed ID: 37783160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Portable Fuzzy Driver Drowsiness Estimation System.
    Celecia A; Figueiredo K; Vellasco M; González R
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32717787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-sensor driver monitoring for drowsiness prediction.
    Schwarz C; Gaspar J; Yousefian R
    Traffic Inj Prev; 2023; 24(sup1):S100-S104. PubMed ID: 37267009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tensor-Based EEG Network Formation and Feature Extraction for Cross-Session Driving Drowsiness Detection.
    Shen M; Zou B; Li X; Zheng Y; Zhang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():252-255. PubMed ID: 33017976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gaze position modulates the effectiveness of forward collision warnings for drowsy drivers.
    Gaspar JG; Schwarz CW; Brown TL; Kang J
    Accid Anal Prev; 2019 May; 126():25-30. PubMed ID: 29277383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Steering in a random forest: ensemble learning for detecting drowsiness-related lane departures.
    McDonald AD; Lee JD; Schwarz C; Brown TL
    Hum Factors; 2014 Aug; 56(5):986-98. PubMed ID: 25141601
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer vision-based approach to detect fatigue driving and face mask for edge computing device.
    Rahman A; Hriday MBH; Khan R
    Heliyon; 2022 Oct; 8(10):e11204. PubMed ID: 36325144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting driver drowsiness using vehicle measures: recent insights and future challenges.
    Liu CC; Hosking SG; Lenné MG
    J Safety Res; 2009; 40(4):239-45. PubMed ID: 19778647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultra-Wide Band Radar Empowered Driver Drowsiness Detection with Convolutional Spatial Feature Engineering and Artificial Intelligence.
    Siddiqui HUR; Akmal A; Iqbal M; Saleem AA; Raza MA; Zafar K; Zaib A; Dudley S; Arambarri J; Castilla ÁK; Rustam F
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Driver drowsiness detection based on non-intrusive metrics considering individual specifics.
    Wang X; Xu C
    Accid Anal Prev; 2016 Oct; 95(Pt B):350-357. PubMed ID: 26433567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adapting artificial neural networks to a specific driver enhances detection and prediction of drowsiness.
    Jacobé de Naurois C; Bourdin C; Bougard C; Vercher JL
    Accid Anal Prev; 2018 Dec; 121():118-128. PubMed ID: 30243040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Driver Drowsiness EEG Detection Based on Tree Federated Learning and Interpretable Network.
    Qin X; Niu Y; Zhou H; Li X; Jia W; Zheng Y
    Int J Neural Syst; 2023 Mar; 33(3):2350009. PubMed ID: 36655401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensor-Based Classification of Primary and Secondary Car Driver Activities Using Convolutional Neural Networks.
    Doniec R; Konior J; Sieciński S; Piet A; Irshad MT; Piaseczna N; Hasan MA; Li F; Nisar MA; Grzegorzek M
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The detection of drowsiness using a driver monitoring system.
    Schwarz C; Gaspar J; Miller T; Yousefian R
    Traffic Inj Prev; 2019; 20(sup1):S157-S161. PubMed ID: 31381433
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.