These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37960461)

  • 1. Driving Intention Recognition of Surrounding Vehicles Based on a Time-Sequenced Weights Hidden Markov Model for Autonomous Driving.
    Liu P; Qu T; Gao H; Gong X
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns.
    Shangguan Q; Fu T; Wang J; Fang S; Fu L
    Accid Anal Prev; 2022 Jan; 164():106500. PubMed ID: 34823098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional Artificial Potential Field-Based Autonomous Vehicle Safety Control with Interference of Lane Changing in Mixed Traffic Scenario.
    Gao K; Yan D; Yang F; Xie J; Liu L; Du R; Xiong N
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vehicle Trajectory Prediction with Lane Stream Attention-Based LSTMs and Road Geometry Linearization.
    Yu D; Lee H; Kim T; Hwang SH
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive Lane Keeping System for Autonomous Vehicles Using LSTM-RNN Considering Driving Environments.
    Jeong Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Driver's Physiology Sensor-Based Driving Risk Prediction Method for Lane-Changing Process Using Hidden Markov Model.
    Li Y; Wang F; Ke H; Wang LL; Xu CC
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31200499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Intelligent Approach to Lane-Change Behavior Prediction for Intelligent and Connected Vehicles.
    Du L; Chen W; Ji J; Pei Z; Tong B; Zheng H
    Comput Intell Neurosci; 2022; 2022():9516218. PubMed ID: 35082845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-to-End Automated Lane-Change Maneuvering Considering Driving Style Using a Deep Deterministic Policy Gradient Algorithm.
    Hu H; Lu Z; Wang Q; Zheng C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32971987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation Model of Autonomous Vehicles' Speed Suitability Based on Overtaking Frequency.
    Li S; Huang M; Guo M; Yu M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal Feature Enhancement Aids the Driving Intention Inference of Intelligent Vehicles.
    Chen H; Chen H; Liu H; Feng X
    Int J Environ Res Public Health; 2022 Sep; 19(18):. PubMed ID: 36142087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implicit intention communication as a design opportunity for automated vehicles: Understanding drivers' interpretation of vehicle trajectory at narrow passages.
    Miller L; Leitner J; Kraus J; Baumann M
    Accid Anal Prev; 2022 Aug; 173():106691. PubMed ID: 35667256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring the Driver's Lane Change Intention through LiDAR-Based Environment Analysis Using Convolutional Neural Networks.
    Díaz-Álvarez A; Clavijo M; Jiménez F; Serradilla F
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33440897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Lane-Changing Decision-Making Behavior of Autonomous Vehicles Based on Molecular Dynamics.
    Qu D; Zhang K; Song H; Wang T; Dai S
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an Autonomous Driving Vehicle for Garbage Collection in Residential Areas.
    Pyo JW; Bae SH; Joo SH; Lee MK; Ghosh A; Kuc TY
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggressive driving behavior prediction considering driver's intention based on multivariate-temporal feature data.
    Xu W; Wang J; Fu T; Gong H; Sobhani A
    Accid Anal Prev; 2022 Jan; 164():106477. PubMed ID: 34813934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-Series-Based Personalized Lane-Changing Decision-Making Model.
    Ye M; Pu L; Li P; Lu X; Liu Y
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hybrid Approach for Turning Intention Prediction Based on Time Series Forecasting and Deep Learning.
    Zhang H; Fu R
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32872356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian Driver Agent Model for Autonomous Vehicles System Based on Knowledge-Aware and Real-Time Data.
    Ma J; Xie H; Song K; Liu H
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33418987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-Like Lane Change Decision Model for Autonomous Vehicles that Considers the Risk Perception of Drivers in Mixed Traffic.
    Wang C; Sun Q; Li Z; Zhang H
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does assisted driving behavior lead to safety-critical encounters with unequipped vehicles' drivers?
    Preuk K; Stemmler E; Schießl C; Jipp M
    Accid Anal Prev; 2016 Oct; 95(Pt A):149-56. PubMed ID: 27442594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.