These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37960561)

  • 1. UCO Physical Rehabilitation: New Dataset and Study of Human Pose Estimation Methods on Physical Rehabilitation Exercises.
    Aguilar-Ortega R; Berral-Soler R; Jiménez-Velasco I; Romero-Ramírez FJ; García-Marín M; Zafra-Palma J; Muñoz-Salinas R; Medina-Carnicer R; Marín-Jiménez MJ
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human 3D pose estimation in a lying position by RGB-D images for medical diagnosis and rehabilitation.
    Wu Q; Xu G; Zhang S; Li Y; Wei F
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5802-5805. PubMed ID: 33019293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Efficient 3D Human Pose Retrieval and Reconstruction from 2D Image-Based Landmarks.
    Yasin H; Krüger B
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33915719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RGB-D-Based Method for Measuring the Angular Range of Hip and Knee Joints during Home Care Rehabilitation.
    Uccheddu F; Furferi R; Governi L; Carfagni M
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vogtareuth Rehab Depth Datasets: Benchmark for Marker-less Posture Estimation in Rehabilitation.
    Banik S; Garcia AM; Kiwull L; Berweck S; Knoll A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2063-2066. PubMed ID: 34891694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise quantification from single camera view markerless 3D pose estimation.
    Mercadal-Baudart C; Liu CJ; Farrell G; Boyne M; González Escribano J; Smolic A; Simms C
    Heliyon; 2024 Mar; 10(6):e27596. PubMed ID: 38510055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating a novel synthetic dataset for rehabilitation exercises using pose-guided conditioned diffusion models: A quantitative and qualitative evaluation.
    Mennella C; Maniscalco U; De Pietro G; Esposito M
    Comput Biol Med; 2023 Dec; 167():107665. PubMed ID: 37925908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning system to monitor and assess rehabilitation exercises in home-based remote and unsupervised conditions.
    Mennella C; Maniscalco U; Pietro G; Esposito M
    Comput Biol Med; 2023 Nov; 166():107485. PubMed ID: 37742419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of 3D Body Tracking from Monocular 2D Video Feeds in Musculoskeletal Telerehabilitation.
    Clemente C; Chambel G; Silva DCF; Montes AM; Pinto JF; Silva HPD
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneously-Collected Multimodal Lying Pose Dataset: Enabling In-Bed Human Pose Monitoring.
    Liu S; Huang X; Fu N; Li C; Su Z; Ostadabbas S
    IEEE Trans Pattern Anal Mach Intell; 2023 Jan; 45(1):1106-1118. PubMed ID: 35239476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Joint Angle Estimation Using Deep Learning-Based Three-Dimensional Human Pose Estimation for Application in a Real Environment.
    Choi JY; Ha E; Son M; Jeon JH; Kim JW
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Potential of Computer Vision-Based Marker-Less Human Motion Analysis for Rehabilitation.
    Hellsten T; Karlsson J; Shamsuzzaman M; Pulkkis G
    Rehabil Process Outcome; 2021; 10():11795727211022330. PubMed ID: 34987303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PosturePose: Optimized Posture Analysis for Semi-Supervised Monocular 3D Human Pose Estimation.
    Amadi L; Agam G
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Top-Down System for Multi-Person 3D Absolute Pose Estimation from Monocular Videos.
    El Kaid A; Brazey D; Barra V; Baïna K
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Machine Learning App for Monitoring Physical Therapy at Home.
    Pereira B; Cunha B; Viana P; Lopes M; Melo ASC; Sousa ASP
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiotherapy Exercise Classification with Single-Camera Pose Detection and Machine Learning.
    Arrowsmith C; Burns D; Mak T; Hardisty M; Whyne C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realtime Indoor Workout Analysis Using Machine Learning & Computer Vision.
    Nagarkoti A; Teotia R; Mahale AK; Das PK
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1440-1443. PubMed ID: 31946164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LHPE-nets: A lightweight 2D and 3D human pose estimation model with well-structural deep networks and multi-view pose sample simplification method.
    Wang H; Sun MH; Zhang H; Dong LY
    PLoS One; 2022; 17(2):e0264302. PubMed ID: 35196346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An interactive and low-cost full body rehabilitation framework based on 3D immersive serious games.
    Avola D; Cinque L; Foresti GL; Marini MR
    J Biomed Inform; 2019 Jan; 89():81-100. PubMed ID: 30521854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing Physical Rehabilitation Exercises using Graph Convolutional Network with Self-supervised regularization.
    Du C; Graham S; Depp C; Nguyen T
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():281-285. PubMed ID: 34891291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.