BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37960645)

  • 1. A Deep Learning Approach to Classify Surgical Skill in Microsurgery Using Force Data from a Novel Sensorised Surgical Glove.
    Xu J; Anastasiou D; Booker J; Burton OE; Layard Horsfall H; Salvadores Fernandez C; Xue Y; Stoyanov D; Tiwari MK; Marcus HJ; Mazomenos EB
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Sensorised Surgical Glove to Analyze Forces During Neurosurgery.
    Layard Horsfall H; Salvadores Fernandez C; Bagchi B; Datta P; Gupta P; Koh CH; Khan D; Muirhead W; Desjardins A; Tiwari MK; Marcus HJ
    Neurosurgery; 2023 Mar; 92(3):639-646. PubMed ID: 36729776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental set-up and sensory glove interface for microsurgery.
    Amirouche F; Martin JR; Gonzalez M; Fergusson L
    Proc Inst Mech Eng H; 2008 Jan; 222(1):89-99. PubMed ID: 18335721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Vision-Based Microsurgical Skill Analysis in Neurosurgery Using Deep Learning: Development and Preclinical Validation.
    Davids J; Makariou SG; Ashrafian H; Darzi A; Marcus HJ; Giannarou S
    World Neurosurg; 2021 May; 149():e669-e686. PubMed ID: 33588081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic microsurgery: validating an assessment tool and plotting the learning curve.
    Alrasheed T; Liu J; Hanasono MM; Butler CE; Selber JC
    Plast Reconstr Surg; 2014 Oct; 134(4):794-803. PubMed ID: 25357037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking the learning curve in microsurgical skill acquisition.
    Selber JC; Chang EI; Liu J; Suami H; Adelman DM; Garvey P; Hanasono MM; Butler CE
    Plast Reconstr Surg; 2012 Oct; 130(4):550e-557e. PubMed ID: 23018716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence-based microsurgical skills acquisition series part 2: validated assessment instruments--a systematic review.
    Dumestre D; Yeung JK; Temple-Oberle C
    J Surg Educ; 2015; 72(1):80-9. PubMed ID: 25086464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next in Surgical Data Science: Autonomous Non-Technical Skill Assessment in Minimally Invasive Surgery Training.
    Nagyné Elek R; Haidegger T
    J Clin Med; 2022 Dec; 11(24):. PubMed ID: 36556148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of microsurgery competency-where are we now?
    Ramachandran S; Ghanem AM; Myers SR
    Microsurgery; 2013 Jul; 33(5):406-15. PubMed ID: 23712917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Modal Deep Learning for Assessing Surgeon Technical Skill.
    Kasa K; Burns D; Goldenberg MG; Selim O; Whyne C; Hardisty M
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining Standards in Experimental Microsurgical Training: Recommendations of the European Society for Surgical Research (ESSR) and the International Society for Experimental Microsurgery (ISEM).
    Tolba RH; Czigány Z; Osorio Lujan S; Oltean M; Axelsson M; Akelina Y; Di Cataldo A; Miko I; Furka I; Dahmen U; Kobayashi E; Ionac M; Nemeth N
    Eur Surg Res; 2017; 58(5-6):246-262. PubMed ID: 28746936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Objective evaluation of skill acquisition in novice microsurgeons.
    Brosious JP; Tsuda ST; Menezes JM; Baynosa RC; Stephenson LL; Mohsin AG; Wang WZ; Zamboni WA
    J Reconstr Microsurg; 2012 Oct; 28(8):539-42. PubMed ID: 22744902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated tool detection with deep learning for monitoring kinematics and eye-hand coordination in microsurgery.
    Koskinen J; Torkamani-Azar M; Hussein A; Huotarinen A; Bednarik R
    Comput Biol Med; 2022 Feb; 141():105121. PubMed ID: 34968859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance.
    Lu H; Ehwerhemuepha L; Rakovski C
    BMC Med Res Methodol; 2022 Jul; 22(1):181. PubMed ID: 35780100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of an eye movement-based deep learning system for laparoscopic surgical skills assessment.
    Kuo RJ; Chen HJ; Kuo YH
    Sci Rep; 2022 Aug; 12(1):11036. PubMed ID: 35970911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the surgical glove in microsurgery.
    Hou SM; Urbaniak JR
    J Reconstr Microsurg; 1987 Oct; 4(1):45-8. PubMed ID: 3681828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Video-based surgical skill assessment using 3D convolutional neural networks.
    Funke I; Mees ST; Weitz J; Speidel S
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1217-1225. PubMed ID: 31104257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frankfurt microsurgery course: the first 175 trainees.
    Perez-Abadia G; Janko M; Pindur L; Sauerbier M; Barker JH; Joshua I; Marzi I; Frank J
    Eur J Trauma Emerg Surg; 2017 Jun; 43(3):377-386. PubMed ID: 28161793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new training method to improve deep microsurgical skills using a mannequin head.
    Takeuchi M; Hayashi N; Hamada H; Matsumura N; Nishijo H; Endo S
    Microsurgery; 2008; 28(3):168-70. PubMed ID: 18286651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors Correlating With Microsurgical Performance: A Clinical and Experimental Study.
    Schaverien MV; Liu J; Butler CE; Selber JC
    J Surg Educ; 2018; 75(4):1045-1051. PubMed ID: 29199083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.