These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37960662)

  • 1. Anomaly Detection of Wind Turbine Driveline Based on Sequence Decomposition Interactive Network.
    Lyu Q; He Y; Wu S; Li D; Wang X
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multiscale Spatio-Temporal Convolutional Deep Belief Network for Sensor Fault Detection of Wind Turbine.
    Wang H; Wang H; Jiang G; Wang Y; Ren S
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32599907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Fault Detection and Classification of Wind Turbines Using Stacking Classifier.
    Waqas Khan P; Byun YC
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wind Turbine Condition Monitoring Using the SSA-Optimized Self-Attention BiLSTM Network and Changepoint Detection Algorithm.
    Yan J; Liu Y; Li L; Ren X
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Condition Monitoring of Wind Turbine Systems by Explainable Artificial Intelligence Techniques.
    Astolfi D; De Caro F; Vaccaro A
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Improved Feature Selection Method Based on Random Forest Algorithm for Wind Turbine Condition Monitoring.
    Li G; Wang C; Zhang D; Yang G
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Wind Conditions on Wind Turbine Temperature Monitoring and Solution Based on Wind Condition Clustering and IGA-ELM.
    Hou Z; Zhuang S
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined mono- and multi-turbine approach for fault indicator synthesis and wind turbine monitoring using SCADA data.
    Lebranchu A; Charbonnier S; Bérenguer C; Prévost F
    ISA Trans; 2019 Apr; 87():272-281. PubMed ID: 30545768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the Limits of Early Predictive Maintenance in Wind Turbines Applying an Anomaly Detection Technique.
    Jankauskas M; Serackis A; Šapurov M; Pomarnacki R; Baskys A; Hyunh VK; Vaimann T; Zakis J
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Online Digital Imaging Excitation Sensor for Wind Turbine Gearbox Wear Condition Monitoring Based on Adaptive Deep Learning Method.
    Tao H; Zhong Y; Yang G; Feng W
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wind turbine anomaly detection based on SCADA: A deep autoencoder enhanced by fault instances.
    Liu J; Yang G; Li X; Wang Q; He Y; Yang X
    ISA Trans; 2023 Aug; 139():586-605. PubMed ID: 37076374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wind Turbine Main Bearing Fault Prognosis Based Solely on SCADA Data.
    Encalada-Dávila Á; Puruncajas B; Tutivén C; Vidal Y
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wind Turbine Gearbox Condition Monitoring Based on Class of Support Vector Regression Models and Residual Analysis.
    Dhiman HS; Deb D; Carroll J; Muresan V; Unguresan ML
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified Approach of Manufacturer's Power Curve Based on Improved Bins and K-Means++ Clustering.
    Fang Y; Wang Y; Liu C; Cai G
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibration Analysis for Fault Detection of Wind Turbine Drivetrains-A Comprehensive Investigation.
    Teng W; Ding X; Tang S; Xu J; Shi B; Liu Y
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33804512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning for Long Cycle Maintenance Prediction of Wind Turbine.
    Yeh CH; Lin MH; Lin CH; Yu CE; Chen MJ
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30965619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspects of structural health and condition monitoring of offshore wind turbines.
    Antoniadou I; Dervilis N; Papatheou E; Maguire AE; Worden K
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent fault detection scheme for constant-speed wind turbines based on improved multiscale fuzzy entropy and adaptive chaotic Aquila optimization-based support vector machine.
    Wang Z; Li G; Yao L; Cai Y; Lin T; Zhang J; Dong H
    ISA Trans; 2023 Jul; 138():582-602. PubMed ID: 36966057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines.
    Gao L; Hu H
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34635597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.