These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37961041)
1. Promoting Syngas to Olefins with Isolated Internal Silanols-Enriched Al-IDM-1 Aluminosilicate Nanosheets. Tuo J; Fan Y; Wang Y; Gong Y; Zhai C; Gong X; Yang T; Xu H; Jiang J; Guan Y; Ma Y; Wu P Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202313785. PubMed ID: 37961041 [TBL] [Abstract][Full Text] [Related]
2. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO Su J; Zhou H; Liu S; Wang C; Jiao W; Wang Y; Liu C; Ye Y; Zhang L; Zhao Y; Liu H; Wang D; Yang W; Xie Z; He M Nat Commun; 2019 Mar; 10(1):1297. PubMed ID: 30899003 [TBL] [Abstract][Full Text] [Related]
3. Further Studies on How the Nature of Zeolite Cavities That Are Bounded by Small Pores Influences the Conversion of Methanol to Light Olefins. Kang JH; Walter R; Xie D; Davis T; Chen CY; Davis ME; Zones SI Chemphyschem; 2018 Feb; 19(4):412-419. PubMed ID: 29211929 [TBL] [Abstract][Full Text] [Related]
4. Relay Catalysis for Highly Selective Conversion of Methanol to Ethylene in Syngas. Chen K; Wang F; Wang Y; Zhang F; Huang X; Kang J; Zhang Q; Wang Y JACS Au; 2023 Oct; 3(10):2894-2904. PubMed ID: 37885567 [TBL] [Abstract][Full Text] [Related]
5. IDM-1: A Zeolite with Intersecting Medium and Extra-Large Pores Built as an Expansion of Zeolite MFI. Villaescusa LA; Li J; Gao Z; Sun J; Camblor MA Angew Chem Int Ed Engl; 2020 Jul; 59(28):11283-11286. PubMed ID: 32291867 [TBL] [Abstract][Full Text] [Related]
6. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins Liu X; Zhou W; Yang Y; Cheng K; Kang J; Zhang L; Zhang G; Min X; Zhang Q; Wang Y Chem Sci; 2018 May; 9(20):4708-4718. PubMed ID: 29899966 [TBL] [Abstract][Full Text] [Related]
7. Shape-Selective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate. Jiao F; Pan X; Gong K; Chen Y; Li G; Bao X Angew Chem Int Ed Engl; 2018 Apr; 57(17):4692-4696. PubMed ID: 29498167 [TBL] [Abstract][Full Text] [Related]
8. Direct synthesis of IDM-1 aluminosilicate nanosheets with improved MTP performance. Gong Y; Tuo J; Li S; Zhao Y; Xu H; Guan Y; Jiang J; Wu P Chem Commun (Camb); 2023 Jan; 59(6):724-727. PubMed ID: 36541181 [TBL] [Abstract][Full Text] [Related]
9. Influence of the ZnCrAl Oxide Composition on the Formation of Hydrocarbons from Syngas. Kull T; Wiesmann T; Wilmsen A; Purcel M; Muhler M; Lohmann H; Zeidler-Fandrich B; Apfel UP ACS Omega; 2022 Nov; 7(47):42994-43005. PubMed ID: 36467945 [TBL] [Abstract][Full Text] [Related]
10. Dynamic confinement of SAPO-17 cages on the selectivity control of syngas conversion. Wang H; Jiao F; Ding Y; Liu W; Xu Z; Pan X; Bao X Natl Sci Rev; 2022 Sep; 9(9):nwac146. PubMed ID: 36128451 [TBL] [Abstract][Full Text] [Related]
11. Controlled Nanostructure of Zeolite Crystal Encapsulating FeMnK Catalysts Targeting Light Olefins from Syngas. Zhu C; Zhang M; Huang C; Han Y; Fang K ACS Appl Mater Interfaces; 2020 Dec; 12(52):57950-57962. PubMed ID: 33337154 [TBL] [Abstract][Full Text] [Related]
12. ECNU-13: A High-Silica Zeolite with Three-Dimensional and High-Connectivity Multi-Pore Structures for Selective Alkene Cracking. Peng M; Deng Q; Zhao Y; Xu H; Guan Y; Jiang J; Han L; Wu P Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202217004. PubMed ID: 36797204 [TBL] [Abstract][Full Text] [Related]
13. High-Quality Gasoline Directly from Syngas by Dual Metal Oxide-Zeolite (OX-ZEO) Catalysis. Li N; Jiao F; Pan X; Chen Y; Feng J; Li G; Bao X Angew Chem Int Ed Engl; 2019 May; 58(22):7400-7404. PubMed ID: 30945413 [TBL] [Abstract][Full Text] [Related]
14. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling. Cheng K; Gu B; Liu X; Kang J; Zhang Q; Wang Y Angew Chem Int Ed Engl; 2016 Apr; 55(15):4725-8. PubMed ID: 26961855 [TBL] [Abstract][Full Text] [Related]
15. Role of Al in Na-ZSM-5 zeolite structure on catalyst stability in butene cracking reaction. Auepattana-Aumrung C; Márquez V; Wannakao S; Jongsomjit B; Panpranot J; Praserthdam P Sci Rep; 2020 Aug; 10(1):13643. PubMed ID: 32788643 [TBL] [Abstract][Full Text] [Related]
16. Steam catalytic cracking and lump kinetics of naphtha to light olefins over nanocrystalline ZSM-5 zeolite. Al-Shafei EN; Aljishi AN; Shakoor ZM; Albahar MZ; Aljishi MF; Alasseel A RSC Adv; 2023 Aug; 13(37):25804-25816. PubMed ID: 37664195 [TBL] [Abstract][Full Text] [Related]
17. Nanocavity effects of various zeolite frameworks on n-pentane cracking to light olefins: combination studies of DFT calculations and experiments. Thivasasith A; Maihom T; Pengpanich S; Wattanakit C Phys Chem Chem Phys; 2019 Oct; 21(40):22215-22223. PubMed ID: 31486460 [TBL] [Abstract][Full Text] [Related]
18. A Microporous Aluminosilicate with 12-, 12-, and 8-Ring Pores and Isolated 8-Ring Channels. Nakazawa N; Ikeda T; Hiyoshi N; Yoshida Y; Han Q; Inagaki S; Kubota Y J Am Chem Soc; 2017 Jun; 139(23):7989-7997. PubMed ID: 28581728 [TBL] [Abstract][Full Text] [Related]
19. Control of Sequential MTO Reactions through an MFI-Type Zeolite Membrane Contactor. Tanizume S; Yoshimura T; Ishii K; Nomura M Membranes (Basel); 2020 Feb; 10(2):. PubMed ID: 32046126 [TBL] [Abstract][Full Text] [Related]
20. Key role of the pore volume of zeolite for selective production of propylene from olefins. Koyama TR; Hayashi Y; Horie H; Kawauchi S; Matsumoto A; Iwase Y; Sakamoto Y; Miyaji A; Motokura K; Baba T Phys Chem Chem Phys; 2010 Mar; 12(11):2541-54. PubMed ID: 20200730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]