These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37961320)

  • 1. Micrococcin cysteine-to-thiazole conversion through transient interactions between a scaffolding protein and two modification enzymes.
    Calvopina-Chavez DG; Bursey DM; Tseng YJ; Patil LM; Bewley KD; Bennallack PR; McPhie JM; Wagstaff KB; Daley A; Miller SM; Moody JD; Price JC; Griffitts JS
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micrococcin cysteine-to-thiazole conversion through transient interactions between the scaffolding protein TclI and the modification enzymes TclJ and TclN.
    Calvopina-Chavez DG; Bursey DM; Tseng Y-J; Patil LM; Bewley KD; Bennallack PR; McPhie JM; Wagstaff KB; Daley A; Miller SM; Moody JD; Price JC; Griffitts JS
    Appl Environ Microbiol; 2024 Jun; 90(6):e0024424. PubMed ID: 38780510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accessing Diverse Pyridine-Based Macrocyclic Peptides by a Two-Site Recognition Pathway.
    Nguyen DT; Le TT; Rice AJ; Hudson GA; van der Donk WA; Mitchell DA
    J Am Chem Soc; 2022 Jun; 144(25):11263-11269. PubMed ID: 35713415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orchestration of enzymatic processing by thiazole/oxazole-modified microcin dehydrogenases.
    Melby JO; Li X; Mitchell DA
    Biochemistry; 2014 Jan; 53(2):413-22. PubMed ID: 24364559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promiscuous Enzymes Cooperate at the Substrate Level En Route to Lactazole A.
    Vinogradov AA; Shimomura M; Kano N; Goto Y; Onaka H; Suga H
    J Am Chem Soc; 2020 Aug; 142(32):13886-13897. PubMed ID: 32664727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of an Auxiliary Leader Peptide-Binding Protein Required for Azoline Formation in Ribosomal Natural Products.
    Dunbar KL; Tietz JI; Cox CL; Burkhart BJ; Mitchell DA
    J Am Chem Soc; 2015 Jun; 137(24):7672-7. PubMed ID: 26024319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro Biosynthesis of Peptides Containing Exotic Azoline Analogues.
    Goto Y; Suga H
    Chembiochem; 2020 Jan; 21(1-2):84-87. PubMed ID: 31523895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capture of micrococcin biosynthetic intermediates reveals C-terminal processing as an obligatory step for in vivo maturation.
    Bewley KD; Bennallack PR; Burlingame MA; Robison RA; Griffitts JS; Miller SM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12450-12455. PubMed ID: 27791142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disordered regions in proteusin peptides guide post-translational modification by a flavin-dependent RiPP brominase.
    Nguyen NA; Vidya FNU; Yennawar NH; Wu H; McShan AC; Agarwal V
    Nat Commun; 2024 Feb; 15(1):1265. PubMed ID: 38341413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chimeric Leader Peptides for the Generation of Non-Natural Hybrid RiPP Products.
    Burkhart BJ; Kakkar N; Hudson GA; van der Donk WA; Mitchell DA
    ACS Cent Sci; 2017 Jun; 3(6):629-638. PubMed ID: 28691075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steric complementarity directs sequence promiscuous leader binding in RiPP biosynthesis.
    Chekan JR; Ongpipattanakul C; Nair SK
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24049-24055. PubMed ID: 31719203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Heterotrimeric Dehydrogenase Complex Functions with 2 Distinct YcaO Proteins to Install 5 Azole Heterocycles into 35-Membered Sulfomycin Thiopeptides.
    Du Y; Qiu Y; Meng X; Feng J; Tao J; Liu W
    J Am Chem Soc; 2020 May; 142(18):8454-8463. PubMed ID: 32293883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture of Microcin B17 Synthetase: An Octameric Protein Complex Converting a Ribosomally Synthesized Peptide into a DNA Gyrase Poison.
    Ghilarov D; Stevenson CEM; Travin DY; Piskunova J; Serebryakova M; Maxwell A; Lawson DM; Severinov K
    Mol Cell; 2019 Feb; 73(4):749-762.e5. PubMed ID: 30661981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic Pyridine Aromatization during Thiopeptide Biosynthesis.
    Rice AJ; Pelton JM; Kramer NJ; Catlin DS; Nair SK; Pogorelov TV; Mitchell DA; Bowers AA
    J Am Chem Soc; 2022 Nov; 144(46):21116-21124. PubMed ID: 36351243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using LanM Enzymes to Modify Glucagon-Like Peptides 1 and 2 in E.coli.
    Larsen CK; Lindquist P; Rosenkilde M; Madsen AR; Haselmann K; Glendorf T; Olesen K; Kodal ALB; Tørring T
    Chembiochem; 2024 Jul; 25(13):e202400201. PubMed ID: 38701360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenesis of NosM Leader Peptide Reveals Important Elements in Nosiheptide Biosynthesis.
    Jin L; Wu X; Xue Y; Jin Y; Wang S; Chen Y
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27913416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vivo Production of Diverse β-Amino Acid-Containing Proteins.
    Lakis E; Magyari S; Piel J
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202202695. PubMed ID: 35481938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Basis for Ribosomal Peptide Backbone Modifications.
    Dong SH; Liu A; Mahanta N; Mitchell DA; Nair SK
    ACS Cent Sci; 2019 May; 5(5):842-851. PubMed ID: 31139720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatic prediction and experimental validation of RiPP recognition elements.
    Shelton KE; Mitchell DA
    Methods Enzymol; 2023; 679():191-233. PubMed ID: 36682862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.