These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 37961337)

  • 1. Fine-mapping causal tissues and genes at disease-associated loci.
    Strober BJ; Zhang MJ; Amariuta T; Rossen J; Price AL
    medRxiv; 2024 Jun; ():. PubMed ID: 37961337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging allelic imbalance to refine fine-mapping for eQTL studies.
    Zou J; Hormozdiari F; Jew B; Castel SE; Lappalainen T; Ernst J; Sul JH; Eskin E
    PLoS Genet; 2019 Dec; 15(12):e1008481. PubMed ID: 31834882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia.
    Guo S; Yang J
    Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating colocalization probability from limited summary statistics.
    King EA; Dunbar F; Davis JW; Degner JF
    BMC Bioinformatics; 2021 May; 22(1):254. PubMed ID: 34000989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling tissue co-regulation estimates tissue-specific contributions to disease.
    Amariuta T; Siewert-Rocks K; Price AL
    Nat Genet; 2023 Sep; 55(9):1503-1511. PubMed ID: 37580597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating gene-level false discovery probability improves eQTL statistical fine-mapping precision.
    Wang QS; Edahiro R; Namkoong H; Hasegawa T; Shirai Y; Sonehara K; ; Kumanogoh A; Ishii M; Koike R; Kimura A; Imoto S; Miyano S; Ogawa S; Kanai T; Fukunaga K; Okada Y
    NAR Genom Bioinform; 2023 Dec; 5(4):lqad090. PubMed ID: 37915762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of genetically regulated gene expression across multiple tissues implicates novel gene candidates in Alzheimer's disease.
    Gerring ZF; Lupton MK; Edey D; Gamazon ER; Derks EM
    Alzheimers Res Ther; 2020 Apr; 12(1):43. PubMed ID: 32299494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of causal genes at GWAS loci with pleiotropic gene regulatory effects using sets of correlated instrumental variables.
    Khan M; Ludl AA; Bankier S; Björkegren JL; Michoel T
    ArXiv; 2024 Sep; ():. PubMed ID: 38259344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 93 risk genes for Alzheimer's disease dementia.
    Guo S; Yang J
    medRxiv; 2023 Jul; ():. PubMed ID: 37503151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue specific regulation of transcription in endometrium and association with disease.
    Mortlock S; Kendarsari RI; Fung JN; Gibson G; Yang F; Restuadi R; Girling JE; Holdsworth-Carson SJ; Teh WT; Lukowski SW; Healey M; Qi T; Rogers PAW; Yang J; McKinnon B; Montgomery GW
    Hum Reprod; 2020 Feb; 35(2):377-393. PubMed ID: 32103259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of Expression QTLs with fine mapping via SuSiE.
    Zhang X; Jiang W; Zhao H
    medRxiv; 2023 Oct; ():. PubMed ID: 37873337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colocalization of corneal resistance factor GWAS loci with GTEx e/sQTLs highlights plausible candidate causal genes for keratoconus postnatal corneal stroma weakening.
    Jiang X; Boutin T; Vitart V
    Front Genet; 2023; 14():1171217. PubMed ID: 37621707
    [No Abstract]   [Full Text] [Related]  

  • 13. Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases.
    Yuan K; Longchamps RJ; Pardiñas AF; Yu M; Chen TT; Lin SC; Chen Y; Lam M; Liu R; Xia Y; Guo Z; Shi W; Shen C; ; Daly MJ; Neale BM; Feng YA; Lin YF; Chen CY; O'Donovan M; Ge T; Huang H
    medRxiv; 2023 Jul; ():. PubMed ID: 36711496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Powerful mapping of
    Akamatsu K; Golzari S; Amariuta T
    medRxiv; 2024 Sep; ():. PubMed ID: 39399015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of expression QTLs with fine mapping via SuSiE.
    Zhang X; Jiang W; Zhao H
    PLoS Genet; 2024 Jan; 20(1):e1010929. PubMed ID: 38271473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine-mapping of Parkinson's disease susceptibility loci identifies putative causal variants.
    Schilder BM; Raj T
    Hum Mol Genet; 2022 Mar; 31(6):888-900. PubMed ID: 34617105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endometrial vezatin and its association with endometriosis risk.
    Holdsworth-Carson SJ; Fung JN; Luong HT; Sapkota Y; Bowdler LM; Wallace L; Teh WT; Powell JE; Girling JE; Healey M; Montgomery GW; Rogers PA
    Hum Reprod; 2016 May; 31(5):999-1013. PubMed ID: 27005890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of potential genetic causal variants for obesity-related traits using statistical fine mapping.
    Gong R; Greenbaum J; Lin X; Du Y; Su KJ; Gong Y; Shen J; Deng HW
    Mol Genet Genomics; 2023 Nov; 298(6):1309-1319. PubMed ID: 37498361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved methods for multi-trait fine mapping of pleiotropic risk loci.
    Kichaev G; Roytman M; Johnson R; Eskin E; Lindström S; Kraft P; Pasaniuc B
    Bioinformatics; 2017 Jan; 33(2):248-255. PubMed ID: 27663501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging gene co-regulation to identify gene sets enriched for disease heritability.
    Siewert-Rocks KM; Kim SS; Yao DW; Shi H; Price AL
    Am J Hum Genet; 2022 Mar; 109(3):393-404. PubMed ID: 35108496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.