These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37961403)

  • 21. Neurobiology of the fruit fly's circadian clock.
    Helfrich-Förster C
    Genes Brain Behav; 2005 Mar; 4(2):65-76. PubMed ID: 15720403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Drosophila Receptor Protein Tyrosine Phosphatase LAR Is Required for Development of Circadian Pacemaker Neuron Processes That Support Rhythmic Activity in Constant Darkness But Not during Light/Dark Cycles.
    Agrawal P; Hardin PE
    J Neurosci; 2016 Mar; 36(13):3860-70. PubMed ID: 27030770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uncovering the Roles of Clocks and Neural Transmission in the Resilience of
    Jaumouillé E; Koch R; Nagoshi E
    Front Physiol; 2021; 12():663339. PubMed ID: 34122135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration of light and temperature in the regulation of circadian gene expression in Drosophila.
    Boothroyd CE; Wijnen H; Naef F; Saez L; Young MW
    PLoS Genet; 2007 Apr; 3(4):e54. PubMed ID: 17411344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. miR-124 Regulates the Phase of Drosophila Circadian Locomotor Behavior.
    Zhang Y; Lamba P; Guo P; Emery P
    J Neurosci; 2016 Feb; 36(6):2007-13. PubMed ID: 26865623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms.
    Xiao Y; Yuan Y; Jimenez M; Soni N; Yadlapalli S
    Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34234015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly.
    Iiams SE; Lugena AB; Zhang Y; Hayden AN; Merlin C
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25214-25221. PubMed ID: 31767753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inducible Reporter Lines for Tissue-specific Monitoring of
    Mather LM; Cholak ME; Morfoot CM; Curro KC; Love J; Cavanaugh DJ
    J Biol Rhythms; 2023 Feb; 38(1):44-63. PubMed ID: 36495136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Screening of UNF Targets Identifies
    Kozlov A; Jaumouillé E; Machado Almeida P; Koch R; Rodriguez J; Abruzzi KC; Nagoshi E
    J Neurosci; 2017 Jul; 37(28):6673-6685. PubMed ID: 28592698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular regulation of circadian rhythms in Drosophila and mammals.
    Meyer-Bernstein EL; Sehgal A
    Neuroscientist; 2001 Dec; 7(6):496-505. PubMed ID: 11765127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. dTRPA1 in Non-circadian Neurons Modulates Temperature-dependent Rhythmic Activity in Drosophila melanogaster.
    Das A; Holmes TC; Sheeba V
    J Biol Rhythms; 2016 Jun; 31(3):272-88. PubMed ID: 26868037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated 3D genome, epigenome and transcriptome analyses reveal transcriptional coordination of circadian rhythm in rice.
    Zhang Y; Chen G; Deng L; Gao B; Yang J; Ding C; Zhang Q; Ouyang W; Guo M; Wang W; Liu B; Zhang Q; Sung WK; Yan J; Li G; Li X
    Nucleic Acids Res; 2023 Sep; 51(17):9001-9018. PubMed ID: 37572350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Slowpoke functions in circadian output cells to regulate rest:activity rhythms.
    Ruiz D; Bajwa ST; Vanani N; Bajwa TA; Cavanaugh DJ
    PLoS One; 2021; 16(3):e0249215. PubMed ID: 33765072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms.
    Weger BD; Gobet C; David FPA; Atger F; Martin E; Phillips NE; Charpagne A; Weger M; Naef F; Gachon F
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33452134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin.
    Wu Y; Cao G; Pavlicek B; Luo X; Nitabach MN
    PLoS Biol; 2008 Nov; 6(11):e273. PubMed ID: 18986214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature compensation and temperature sensation in the circadian clock.
    Kidd PB; Young MW; Siggia ED
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):E6284-92. PubMed ID: 26578788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel period mutation implicating nuclear export in temperature compensation of the Drosophila circadian clock.
    Giesecke A; Johnstone PS; Lamaze A; Landskron J; Atay E; Chen KF; Wolf E; Top D; Stanewsky R
    Curr Biol; 2023 Jan; 33(2):336-350.e5. PubMed ID: 36584676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Subset of Circadian Neurons Expressing
    Iyengar AS; Rao S; Sheeba V
    J Biol Rhythms; 2023 Aug; 38(4):341-357. PubMed ID: 37102578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A temperature-dependent timing mechanism is involved in the circadian system that drives locomotor rhythms in the fruit fly Drosophila melanogaster.
    Yoshii T; Sakamoto M; Tomioka K
    Zoolog Sci; 2002 Aug; 19(8):841-50. PubMed ID: 12193800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diversification of the molecular clockwork for tissue-specific function: insight from a novel Drosophila Clock mutant homologous to a mouse Clock allele.
    Cho E; Lee E; Kim EY
    BMB Rep; 2016 Nov; 49(11):587-589. PubMed ID: 27756446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.