These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37961476)
21. rrQNet: Protein contact map quality estimation by deep evolutionary reconciliation. Roche R; Bhattacharya S; Shuvo MH; Bhattacharya D Proteins; 2022 Dec; 90(12):2023-2034. PubMed ID: 35751651 [TBL] [Abstract][Full Text] [Related]
22. Improving protein structure prediction with extended sequence similarity searches and deep-learning-based refinement in CASP15. Oda T Proteins; 2023 Dec; 91(12):1712-1723. PubMed ID: 37485822 [TBL] [Abstract][Full Text] [Related]
23. Improving Inter-Helix Contact Prediction With Local 2D Topological Information. Li J; Sawhney A; Lee JY; Liao L IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3001-3012. PubMed ID: 37155404 [TBL] [Abstract][Full Text] [Related]
24. Accurate prediction of helix interactions and residue contacts in membrane proteins. Hönigschmid P; Frishman D J Struct Biol; 2016 Apr; 194(1):112-23. PubMed ID: 26851352 [TBL] [Abstract][Full Text] [Related]
25. Predicting the helix-helix interactions from correlated residue mutations. Xiong D; Mao W; Gong H Proteins; 2017 Dec; 85(12):2162-2169. PubMed ID: 28833538 [TBL] [Abstract][Full Text] [Related]
26. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter. Yang J; Jin QY; Zhang B; Shen HB Bioinformatics; 2016 Aug; 32(16):2435-43. PubMed ID: 27153618 [TBL] [Abstract][Full Text] [Related]
27. SpatialPPI: Three-dimensional space protein-protein interaction prediction with AlphaFold Multimer. Hu W; Ohue M Comput Struct Biotechnol J; 2024 Dec; 23():1214-1225. PubMed ID: 38545599 [TBL] [Abstract][Full Text] [Related]
28. ContactPFP: Protein function prediction using predicted contact information. Kagaya Y; Flannery ST; Jain A; Kihara D Front Bioinform; 2022 Jun; 2():. PubMed ID: 35875419 [TBL] [Abstract][Full Text] [Related]
29. Impact of protein conformational diversity on AlphaFold predictions. Saldaño T; Escobedo N; Marchetti J; Zea DJ; Mac Donagh J; Velez Rueda AJ; Gonik E; García Melani A; Novomisky Nechcoff J; Salas MN; Peters T; Demitroff N; Fernandez Alberti S; Palopoli N; Fornasari MS; Parisi G Bioinformatics; 2022 May; 38(10):2742-2748. PubMed ID: 35561203 [TBL] [Abstract][Full Text] [Related]
30. A Max-Margin Model for Predicting Residue-Base Contacts in Protein-RNA Interactions. Kashiwagi S; Sato K; Sakakibara Y Life (Basel); 2021 Oct; 11(11):. PubMed ID: 34833011 [TBL] [Abstract][Full Text] [Related]
31. Distance-AF: Modifying Predicted Protein Structure Models by Alphafold2 with User-Specified Distance Constraints. Zhang Y; Zhang Z; Kagaya Y; Terashi G; Zhao B; Xiong Y; Kihara D bioRxiv; 2023 Dec; ():. PubMed ID: 38106200 [TBL] [Abstract][Full Text] [Related]
32. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts. Zhu J; Zhang H; Li SC; Wang C; Kong L; Sun S; Zheng WM; Bu D Bioinformatics; 2017 Dec; 33(23):3749-3757. PubMed ID: 28961795 [TBL] [Abstract][Full Text] [Related]
33. ISSEC: inferring contacts among protein secondary structure elements using deep object detection. Zhang Q; Zhu J; Ju F; Kong L; Sun S; Zheng WM; Bu D BMC Bioinformatics; 2020 Nov; 21(1):503. PubMed ID: 33153432 [TBL] [Abstract][Full Text] [Related]
34. AlphaFold Accurately Predicts the Structure of Ribosomally Synthesized and Post-Translationally Modified Peptide Biosynthetic Enzymes. Gordon CH; Hendrix E; He Y; Walker MC Biomolecules; 2023 Aug; 13(8):. PubMed ID: 37627309 [TBL] [Abstract][Full Text] [Related]
35. RRCRank: a fusion method using rank strategy for residue-residue contact prediction. Jing X; Dong Q; Lu R BMC Bioinformatics; 2017 Sep; 18(1):390. PubMed ID: 28865433 [TBL] [Abstract][Full Text] [Related]
36. Predicting the pathogenicity of missense variants using features derived from AlphaFold2. Schmidt A; Röner S; Mai K; Klinkhammer H; Kircher M; Ludwig KU Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084271 [TBL] [Abstract][Full Text] [Related]
37. Improved protein structure reconstruction using secondary structures, contacts at higher distance thresholds, and non-contacts. Adhikari B; Cheng J BMC Bioinformatics; 2017 Aug; 18(1):380. PubMed ID: 28851269 [TBL] [Abstract][Full Text] [Related]
38. Long-range information and physicality constraints improve predicted protein contact maps. Martin AJ; Baù D; Vullo A; Walsh I; Pollastri G J Bioinform Comput Biol; 2008 Oct; 6(5):1001-20. PubMed ID: 18942163 [TBL] [Abstract][Full Text] [Related]
39. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning. Adhikari B; Hou J; Cheng J Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157 [TBL] [Abstract][Full Text] [Related]
40. Learning spatial structures of proteins improves protein-protein interaction prediction. Song B; Luo X; Luo X; Liu Y; Niu Z; Zeng X Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35018418 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]