These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37961652)

  • 1. Increasing spectral DCM flexibility and speed by leveraging Julia's ModelingToolkit and automated differentiation.
    Hofmann D; Chesebro AG; Rackauckas C; Mujica-Parodi LR; Friston KJ; Edelman A; Strey HH
    bioRxiv; 2024 Jul; ():. PubMed ID: 37961652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A next-generation dynamic programming language Julia: Its features and applications in biological science.
    Pal S; Bhattacharya M; Dash S; Lee SS; Chakraborty C
    J Adv Res; 2024 Oct; 64():143-154. PubMed ID: 37992995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphysics pharmacokinetic model for targeted nanoparticles.
    Glass EM; Kulkarni S; Eng C; Feng S; Malaviya A; Radhakrishnan R
    Front Med Technol; 2022; 4():934015. PubMed ID: 35909883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Julia for biologists.
    Roesch E; Greener JG; MacLean AL; Nassar H; Rackauckas C; Holy TE; Stumpf MPH
    Nat Methods; 2023 May; 20(5):655-664. PubMed ID: 37024649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A validation of dynamic causal modelling for 7T fMRI.
    Tak S; Noh J; Cheong C; Zeidman P; Razi A; Penny WD; Friston KJ
    J Neurosci Methods; 2018 Jul; 305():36-45. PubMed ID: 29758234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalyst: Fast and flexible modeling of reaction networks.
    Loman TE; Ma Y; Ilin V; Gowda S; Korsbo N; Yewale N; Rackauckas C; Isaacson SA
    PLoS Comput Biol; 2023 Oct; 19(10):e1011530. PubMed ID: 37851697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SBMLToolkit.jl: a Julia package for importing SBML into the SciML ecosystem.
    Lang PF; Jain A; Rackauckas C
    J Integr Bioinform; 2024 Mar; 21(1):. PubMed ID: 38801698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time automated spectral assessment of the BOLD response for neurofeedback at 3 and 7T.
    Koush Y; Elliott MA; Scharnowski F; Mathiak K
    J Neurosci Methods; 2013 Sep; 218(2):148-60. PubMed ID: 23685226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing Network Search Algorithms Developed for Dynamic Causal Modeling.
    Aranyi SC; Nagy M; Opposits G; Berényi E; Emri M
    Front Neuroinform; 2021; 15():656486. PubMed ID: 34177506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NetworkDynamics.jl-Composing and simulating complex networks in Julia.
    Lindner M; Lincoln L; Drauschke F; Koulen JM; Würfel H; Plietzsch A; Hellmann F
    Chaos; 2021 Jun; 31(6):063133. PubMed ID: 34241293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. fMRI in Non-human Primate: A Review on Factors That Can Affect Interpretation and Dynamic Causal Modeling Application.
    Jovellar DB; Doudet DJ
    Front Neurosci; 2019; 13():973. PubMed ID: 31619951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral dynamic causal modeling: A didactic introduction and its relationship with functional connectivity.
    Novelli L; Friston K; Razi A
    Netw Neurosci; 2024; 8(1):178-202. PubMed ID: 38562289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PyRates-A code-generation tool for modeling dynamical systems in biology and beyond.
    Gast R; Knösche TR; Kennedy A
    PLoS Comput Biol; 2023 Dec; 19(12):e1011761. PubMed ID: 38150479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spectral sampling algorithm in dynamic causal modelling for resting-state fMRI.
    Xie Y; Zhang P; Zhao J
    Hum Brain Mapp; 2023 Jun; 44(8):2981-2992. PubMed ID: 36929686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of two integration methods for dynamic causal modeling of electrophysiological data.
    Lemaréchal JD; George N; David O
    Neuroimage; 2018 Jun; 173():623-631. PubMed ID: 29462723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Functional Data Method for Causal Dynamic Network Modeling of Task-Related fMRI.
    Cao X; Sandstede B; Luo X
    Front Neurosci; 2019; 13():127. PubMed ID: 30872989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T2-weighted turbo spin-echo magnetic resonance imaging of canine brain anatomy at 1.5T, 3T, and 7T field strengths.
    Jacqmot O; Van Thielen B; Hespel AM; Luijten PR; de Mey J; Van Binst A; Provyn S; Tresignie J
    Anat Rec (Hoboken); 2022 Jan; 305(1):222-233. PubMed ID: 34357697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrophysiological validation of stochastic DCM for fMRI.
    Daunizeau J; Lemieux L; Vaudano AE; Friston KJ; Stephan KE
    Front Comput Neurosci; 2012; 6():103. PubMed ID: 23346055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid parameter estimation for selective inversion recovery myelin imaging using an open-source Julia toolkit.
    Sisco NJ; Wang P; Stokes AM; Dortch RD
    PeerJ; 2022; 10():e13043. PubMed ID: 35368333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra.
    Fuster-Garcia E; Navarro C; Vicente J; Tortajada S; García-Gómez JM; Sáez C; Calvar J; Griffiths J; Julià-Sapé M; Howe FA; Pujol J; Peet AC; Heerschap A; Moreno-Torres A; Martínez-Bisbal MC; Martínez-Granados B; Wesseling P; Semmler W; Capellades J; Majós C; Alberich-Bayarri A; Capdevila A; Monleón D; Martí-Bonmatí L; Arús C; Celda B; Robles M
    MAGMA; 2011 Feb; 24(1):35-42. PubMed ID: 21249420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.