These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37961664)

  • 1. Non-modular Fatty Acid Synthases Yield Unique Acylation in Ribosomal Peptides.
    Ren H; Huang C; Pan Y; Cui H; Dommaraju SR; Mitchell DA; Zhao H
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-modular fatty acid synthases yield distinct N-terminal acylation in ribosomal peptides.
    Ren H; Huang C; Pan Y; Dommaraju SR; Cui H; Li M; Gadgil MG; Mitchell DA; Zhao H
    Nat Chem; 2024 Aug; 16(8):1320-1329. PubMed ID: 38528101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides.
    Russell AH; Truman AW
    Comput Struct Biotechnol J; 2020; 18():1838-1851. PubMed ID: 32728407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome mining unveils a class of ribosomal peptides with two amino termini.
    Ren H; Dommaraju SR; Huang C; Cui H; Pan Y; Nesic M; Zhu L; Sarlah D; Mitchell DA; Zhao H
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides.
    Kozakai R; Ono T; Hoshino S; Takahashi H; Katsuyama Y; Sugai Y; Ozaki T; Teramoto K; Teramoto K; Tanaka K; Abe I; Asamizu S; Onaka H
    Nat Chem; 2020 Sep; 12(9):869-877. PubMed ID: 32719482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome mining unveils a class of ribosomal peptides with two amino termini.
    Ren H; Dommaraju SR; Huang C; Cui H; Pan Y; Nesic M; Zhu L; Sarlah D; Mitchell DA; Zhao H
    Nat Commun; 2023 Mar; 14(1):1624. PubMed ID: 36959188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products.
    Luo S; Dong SH
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31003555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Mining and Discovery of Imiditides, a Novel Family of RiPPs with a Class-defining Aspartimide Modification.
    Cao L; Do T; Zhu AD; Alam N; Link AJ
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal Natural Products, Tailored To Fit.
    Funk MA; van der Donk WA
    Acc Chem Res; 2017 Jul; 50(7):1577-1586. PubMed ID: 28682627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marine Bacterial Ribosomal Peptides: Recent Genomics- and Synthetic Biology-Based Discoveries and Biosynthetic Studies.
    Sukmarini L
    Mar Drugs; 2022 Aug; 20(9):. PubMed ID: 36135733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Mining and Discovery of Imiditides, a Family of RiPPs with a Class-Defining Aspartimide Modification.
    Cao L; Do T; Zhu A; Duan J; Alam N; Link AJ
    J Am Chem Soc; 2023 Aug; 145(34):18834-18845. PubMed ID: 37595015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RiPP antibiotics: biosynthesis and engineering potential.
    Hudson GA; Mitchell DA
    Curr Opin Microbiol; 2018 Oct; 45():61-69. PubMed ID: 29533845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Omics-based strategies to discover novel classes of RiPP natural products.
    Kloosterman AM; Medema MH; van Wezel GP
    Curr Opin Biotechnol; 2021 Jun; 69():60-67. PubMed ID: 33383297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary Spread of Distinct O-methyltransferases Guides the Discovery of Unique Isoaspartate-Containing Peptides, Pamtides.
    Lee H; Park SH; Kim J; Lee J; Koh MS; Lee JH; Kim S
    Adv Sci (Weinh); 2024 Jan; 11(2):e2305946. PubMed ID: 37987032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining.
    Skinnider MA; Johnston CW; Edgar RE; Dejong CA; Merwin NJ; Rees PN; Magarvey NA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6343-E6351. PubMed ID: 27698135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochromes P450 involved in bacterial RiPP biosyntheses.
    Kunakom S; Otani H; Udwary DW; Doering DT; Mouncey NJ
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 36931895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the biosynthesis of ribosomally synthesized and posttranslationally modified peptides of fungal origin.
    Ozaki T; Minami A; Oikawa H
    J Antibiot (Tokyo); 2023 Jan; 76(1):3-13. PubMed ID: 36424516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products.
    Wu C; van der Donk WA
    Curr Opin Biotechnol; 2021 Jun; 69():221-231. PubMed ID: 33556835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolome-guided genome mining of RiPP natural products.
    Zdouc MM; van der Hooft JJJ; Medema MH
    Trends Pharmacol Sci; 2023 Aug; 44(8):532-541. PubMed ID: 37391295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.