These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37962525)

  • 21. Numerical Study on Droplet Sliding across Micropillars.
    Wang Y; Chen S
    Langmuir; 2015 Apr; 31(16):4673-7. PubMed ID: 25860349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Colloidal Drop Deposition on Porous Substrates: Competition among Particle Motion, Evaporation, and Infiltration.
    Pack M; Hu H; Kim DO; Yang X; Sun Y
    Langmuir; 2015 Jul; 31(29):7953-61. PubMed ID: 26132211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental investigation of evaporation from low-contact-angle sessile droplets.
    Dhavaleswarapu HK; Migliaccio CP; Garimella SV; Murthy JY
    Langmuir; 2010 Jan; 26(2):880-8. PubMed ID: 19775145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alternative mechanism for coffee-ring deposition based on active role of free surface.
    Jafari Kang S; Vandadi V; Felske JD; Masoud H
    Phys Rev E; 2016 Dec; 94(6-1):063104. PubMed ID: 28085318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of the coffee-ring effect by sugar-assisted depinning of contact line.
    Shimobayashi SF; Tsudome M; Kurimura T
    Sci Rep; 2018 Dec; 8(1):17769. PubMed ID: 30538268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaporation of Sessile Water Droplets on Horizontal and Vertical Biphobic Patterned Surfaces.
    Qi W; Li J; Weisensee PB
    Langmuir; 2019 Dec; 35(52):17185-17192. PubMed ID: 31809043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.
    Xu W; Leeladhar R; Kang YT; Choi CH
    Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of droplet evaporation on a superhydrophobic surface.
    McHale G; Aqil S; Shirtcliffe NJ; Newton MI; Erbil HY
    Langmuir; 2005 Nov; 21(24):11053-60. PubMed ID: 16285771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A phenomenological approach to the deposition pattern of evaporating droplets with contact line pinning.
    Wang H; Yan D; Qian T
    J Phys Condens Matter; 2018 Oct; 30(43):435001. PubMed ID: 30222131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-pinning of silica suspension droplets on hydrophobic surfaces.
    Yang KC; Wang C; Hu TY; Lin HP; Cho KH; Chen LJ
    J Colloid Interface Sci; 2020 Nov; 579():212-220. PubMed ID: 32590161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disk-Ring Deposition in Drying a Sessile Nanofluid Droplet with Enhanced Marangoni Effect and Particle Surface Adsorption.
    Ren J; Crivoi A; Duan F
    Langmuir; 2020 Dec; 36(49):15064-15074. PubMed ID: 33317269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of fluid flow on the deposition of soluble surfactants through receding contact lines of volatile solvents.
    Beppler BK; Varanasi KS; Garoff S; Evmenenko G; Woods K
    Langmuir; 2008 Jun; 24(13):6705-11. PubMed ID: 18512880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The evaporation behavior of sessile droplets from aqueous saline solutions.
    Soulié V; Karpitschka S; Lequien F; Prené P; Zemb T; Moehwald H; Riegler H
    Phys Chem Chem Phys; 2015 Sep; 17(34):22296-303. PubMed ID: 26246358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Geometrically-controlled evaporation-driven deposition of conductive carbon nanotube patterns on inclined surfaces.
    Issakhani S; Jadidi O; Farhadi J; Bazargan V
    Soft Matter; 2023 Feb; 19(7):1393-1406. PubMed ID: 36723256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Particle Segregation at Contact Lines of Evaporating Colloidal Drops: Influence of the Substrate Wettability and Particle Charge-Mass Ratio.
    Noguera-Marín D; Moraila-Martínez CL; Cabrerizo-Vílchez MA; Rodríguez-Valverde MA
    Langmuir; 2015 Jun; 31(24):6632-8. PubMed ID: 26000909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional Monte Carlo model of the coffee-ring effect in evaporating colloidal droplets.
    Crivoi A; Duan F
    Sci Rep; 2014 Mar; 4():4310. PubMed ID: 24603647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-plane particle counting at contact lines of evaporating colloidal drops: effect of the particle electric charge.
    Noguera-Marín D; Moraila-Martínez CL; Cabrerizo-Vílchez MA; Rodríguez-Valverde MA
    Soft Matter; 2015 Feb; 11(5):987-93. PubMed ID: 25520154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dendritic nanoparticle self-assembly from drying a sessile nanofluid droplet.
    Ren J; Crivoi A; Duan F
    Phys Chem Chem Phys; 2021 Jul; 23(29):15774-15783. PubMed ID: 34286762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stokes flow inside an evaporating liquid line for any contact angle.
    Petsi AJ; Burganos VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036324. PubMed ID: 18851160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of surfactant in controlling the deposition pattern of a particle-laden droplet: Fundamentals and strategies.
    Shao X; Duan F; Hou Y; Zhong X
    Adv Colloid Interface Sci; 2020 Jan; 275():102049. PubMed ID: 31757386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.