These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37962542)

  • 1. Influences of the Carbohydrate-Binding Module on a Fungal Starch-Active Lytic Polysaccharide Monooxygenase.
    Zhang N; Yang J; Li Z; Haider J; Zhou Y; Ji Y; Schwaneberg U; Zhu L
    J Agric Food Chem; 2023 Nov; 71(47):18405-18413. PubMed ID: 37962542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbohydrate-binding modules enhance H
    Gao W; Li T; Zhou H; Ju J; Yin H
    J Biol Chem; 2024 Jan; 300(1):105573. PubMed ID: 38122901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel starch-active lytic polysaccharide monooxygenase discovered with bioinformatics screening and its application in textile desizing.
    Zhang M; Fu X; Gu R; Zhao B; Zhao X; Song H; Zheng H; Xu J; Bai W
    BMC Biotechnol; 2024 Jan; 24(1):2. PubMed ID: 38200466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases.
    Nekiunaite L; Isaksen T; Vaaje-Kolstad G; Abou Hachem M
    FEBS Lett; 2016 Aug; 590(16):2737-47. PubMed ID: 27397613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases.
    Crouch LI; Labourel A; Walton PH; Davies GJ; Gilbert HJ
    J Biol Chem; 2016 Apr; 291(14):7439-49. PubMed ID: 26801613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Linker Region Promotes Activity and Binding Efficiency of Modular LPMO towards Polymeric Substrate.
    Srivastava A; Nagar P; Rathore S; Adlakha N
    Microbiol Spectr; 2022 Feb; 10(1):e0269721. PubMed ID: 35080440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate selectivity in starch polysaccharide monooxygenases.
    Vu VV; Hangasky JA; Detomasi TC; Henry SJW; Ngo ST; Span EA; Marletta MA
    J Biol Chem; 2019 Aug; 294(32):12157-12166. PubMed ID: 31235519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches.
    Nekiunaite L; Arntzen MØ; Svensson B; Vaaje-Kolstad G; Abou Hachem M
    Biotechnol Biofuels; 2016; 9(1):187. PubMed ID: 27588040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation.
    Courtade G; Forsberg Z; Heggset EB; Eijsink VGH; Aachmann FL
    J Biol Chem; 2018 Aug; 293(34):13006-13015. PubMed ID: 29967065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the impact of carbohydrate-binding modules (CBMs) in lytic polysaccharide monooxygenases (LPMOs).
    Forsberg Z; Courtade G
    Essays Biochem; 2023 Apr; 67(3):561-574. PubMed ID: 36504118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of three seemingly similar lytic polysaccharide monooxygenases from
    Petrović DM; Várnai A; Dimarogona M; Mathiesen G; Sandgren M; Westereng B; Eijsink VGH
    J Biol Chem; 2019 Oct; 294(41):15068-15081. PubMed ID: 31431506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced in situ H
    Stepnov AA; Eijsink VGH; Forsberg Z
    Sci Rep; 2022 Apr; 12(1):6129. PubMed ID: 35414104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Lytic Polysaccharide Monooxygenase from a White-Rot Fungus Drives the Degradation of Lignin by a Versatile Peroxidase.
    Li F; Ma F; Zhao H; Zhang S; Wang L; Zhang X; Yu H
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose.
    Cheng C; Haider J; Liu P; Yang J; Tan Z; Huang T; Lin J; Jiang M; Liu H; Zhu L
    J Agric Food Chem; 2020 Dec; 68(51):15257-15266. PubMed ID: 33290065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus.
    Forsberg Z; Nelson CE; Dalhus B; Mekasha S; Loose JS; Crouch LI; Røhr ÅK; Gardner JG; Eijsink VG; Vaaje-Kolstad G
    J Biol Chem; 2016 Apr; 291(14):7300-12. PubMed ID: 26858252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of AA13 LPMOs impairs degradation of resistant starch and reduces the growth of
    Haddad Momeni M; Leth ML; Sternberg C; Schoof E; Nielsen MW; Holck J; Workman CT; Hoof JB; Abou Hachem M
    Biotechnol Biofuels; 2020; 13():135. PubMed ID: 32774456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase.
    Kracher D; Forsberg Z; Bissaro B; Gangl S; Preims M; Sygmund C; Eijsink VGH; Ludwig R
    FEBS J; 2020 Mar; 287(5):897-908. PubMed ID: 31532909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic insights into the role of the reductant in H
    Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P
    J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the H
    Hedison TM; Breslmayr E; Shanmugam M; Karnpakdee K; Heyes DJ; Green AP; Ludwig R; Scrutton NS; Kracher D
    FEBS J; 2021 Jul; 288(13):4115-4128. PubMed ID: 33411405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.