These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37962904)

  • 1. Stability switches and chaos induced by delay in a reaction-diffusion nutrient-plankton model.
    Guo Q; Wang L; Liu H; Wang Y; Li J; Kumar Tiwari P; Zhao M; Dai C
    J Biol Dyn; 2023 Dec; 17(1):2272852. PubMed ID: 37962904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal Model of Plankton Systems Revisited with Spatial Diffusion and Maturation Delay.
    Zhao J; Tian JP; Wei J
    Bull Math Biol; 2016 Mar; 78(3):381-412. PubMed ID: 26934887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical Study of an Eco-Epidemiological Delay Model for Plankton System with Toxicity.
    Thakur NK; Srivastava SC; Ojha A
    Iran J Sci Technol Trans A Sci; 2021; 45(1):283-304. PubMed ID: 33424195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the complexity and chaotic behavior in plankton-fish system with mutual interference and time delay.
    Ojha A; Thakur NK
    Biosystems; 2020 Dec; 198():104283. PubMed ID: 33157156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global dynamics of a diffusive phytoplankton-zooplankton model with toxic substances effect and delay.
    Yang H
    Math Biosci Eng; 2022 Apr; 19(7):6712-6730. PubMed ID: 35730279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaos control in a multiple delayed phytoplankton-zooplankton model with group defense and predator's interference.
    Sajan ; Dubey B
    Chaos; 2021 Aug; 31(8):083101. PubMed ID: 34470255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability analysis and Hopf bifurcation of a fractional order mathematical model with time delay for nutrient-phytoplankton-zooplankton.
    Shi RQ; Ren JN; Wang CH
    Math Biosci Eng; 2020 May; 17(4):3836-3868. PubMed ID: 32987557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcation and pattern dynamics in the nutrient-plankton network.
    Yang W; Zheng Q; Shen J; Guan L
    Math Biosci Eng; 2023 Nov; 20(12):21337-21358. PubMed ID: 38124600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of a nutrient-plankton model with stochastic fluctuation and impulsive control.
    Zhao X; Wang L; Tiwari PK; Liu H; Wang Y; Li J; Zhao M; Dai C; Guo Q
    Math Biosci Eng; 2023 Jul; 20(8):15496-15523. PubMed ID: 37679189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting.
    Meng XY; Li J
    Math Biosci Eng; 2019 Dec; 17(3):1973-2002. PubMed ID: 32233519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient.
    Jiang ZC; Bi XH; Zhang TQ; Pradeep BGSA
    Math Biosci Eng; 2019 Apr; 16(5):3807-3829. PubMed ID: 31499637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of toxin and nutrient for the occurrence and termination of plankton bloom--results drawn from field observations and a mathematical model.
    Pal S; Chatterjee S; Chattopadhyay J
    Biosystems; 2007; 90(1):87-100. PubMed ID: 17194523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity-mediated regime shifts in a contaminated nutrient-plankton system.
    Mandal A; Biswas S; Pal S
    Chaos; 2023 Feb; 33(2):023106. PubMed ID: 36859222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays.
    Li SY
    Math Biosci Eng; 2019 Jul; 16(6):6934-6961. PubMed ID: 31698597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay.
    Manna K; Banerjee M
    Math Biosci Eng; 2019 Mar; 16(4):2411-2446. PubMed ID: 31137220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical analysis of a nutrient-plankton system with delay.
    Rehim M; Zhang Z; Muhammadhaji A
    Springerplus; 2016; 5(1):1055. PubMed ID: 27462503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillations in plankton models with nutrient recycling.
    Ruan S
    J Theor Biol; 2001 Jan; 208(1):15-26. PubMed ID: 11162049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A delay-diffusion model of marine plankton ecosystem exhibiting cyclic nature of blooms.
    Mukhopadhyay B; Bhattacharyya R
    J Biol Phys; 2005 Jan; 31(1):3-22. PubMed ID: 23345881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forward hysteresis and Hopf bifurcation in an Npzd model with application to harmful algal blooms.
    Macdonald JC; Gulbudak H
    J Math Biol; 2023 Aug; 87(3):45. PubMed ID: 37589908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient enrichment and phytoplankton toxicity influence a diversity of complex dynamics in a fear-induced plankton-fish model.
    Mandal A; Sk N; Biswas S
    J Theor Biol; 2024 Feb; 578():111698. PubMed ID: 38081508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.