These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37963005)

  • 1. Multiscale Canonical Coherence for Functional Corticomuscular Coupling Analysis.
    Sun J; Jia T; Lin PJ; Li Z; Ji L; Li C
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):812-822. PubMed ID: 37963005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale Transfer Spectral Entropy for Quantifying Corticomuscular Interaction.
    Liu J; Tan G; Sheng Y; Liu H
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):2281-2292. PubMed ID: 33090963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Canonical maximization of coherence: A novel tool for investigation of neuronal interactions between two datasets.
    Vidaurre C; Nolte G; de Vries IEJ; Gómez M; Boonstra TW; Müller KR; Villringer A; Nikulin VV
    Neuroimage; 2019 Nov; 201():116009. PubMed ID: 31302256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of EEG-EMG coupling detection using corticomuscular coherence with spatial-temporal optimization.
    Sun J; Jia T; Li Z; Li C; Ji L
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37068482
    [No Abstract]   [Full Text] [Related]  

  • 5. Analysis of Functional Corticomuscular Coupling Based on Multiscale Transfer Spectral Entropy.
    Xi X; Ding J; Wang J; Zhao YB; Wang T; Kong W; Li J
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):5085-5096. PubMed ID: 35881606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale Information Transfer in Functional Corticomuscular Coupling Estimation Following Stroke: A Pilot Study.
    Chen X; Xie P; Zhang Y; Chen Y; Yang F; Zhang L; Li X
    Front Neurol; 2018; 9():287. PubMed ID: 29765351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-Frequency Maximal Information Coefficient Method and its Application to Functional Corticomuscular Coupling.
    Liang T; Zhang Q; Liu X; Lou C; Liu X; Wang H
    IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2515-2524. PubMed ID: 33001806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying bidirectional total and non-linear information flow in functional corticomuscular coupling during a dorsiflexion task: a pilot study.
    Liang T; Zhang Q; Liu X; Dong B; Liu X; Wang H
    J Neuroeng Rehabil; 2021 May; 18(1):74. PubMed ID: 33947410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer Spectral Entropy and Application to Functional Corticomuscular Coupling.
    Chen X; Zhang Y; Cheng S; Xie P
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1092-1102. PubMed ID: 30908233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An IC-PLS framework for group corticomuscular coupling analysis.
    Chen X; He C; Wang ZJ; McKeown MJ
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):2022-33. PubMed ID: 23434603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale information interaction at local frequency band in functional corticomuscular coupling.
    Cheng S; Chen X; Zhang Y; Wang Y; Li X; Li X; Xie P
    Cogn Neurodyn; 2023 Dec; 17(6):1575-1589. PubMed ID: 37974587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale Wavelet Transfer Entropy With Application to Corticomuscular Coupling Analysis.
    Guo Z; McClelland VM; Simeone O; Mills KR; Cvetkovic Z
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):771-782. PubMed ID: 34398749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticomuscular Coherence With Time Lag With Application to Delay Estimation.
    Xu Y; McClelland VM; Cvetkovic Z; Mills KR
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):588-600. PubMed ID: 27214885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [An improved maximal information coefficient algorithm applied in the analysis of functional corticomuscular coupling for stroke patients].
    Liang T; Zhang Q; Hong L; Liu X; Dong B; Wang H; Liu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Dec; 38(6):1154-1162. PubMed ID: 34970899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal functional corticomuscular coupling after stroke.
    Chen X; Xie P; Zhang Y; Chen Y; Cheng S; Zhang L
    Neuroimage Clin; 2018; 19():147-159. PubMed ID: 30035012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying support vector regression analysis on grip force level-related corticomuscular coherence.
    Rong Y; Han X; Hao D; Cao L; Wang Q; Li M; Duan L; Zeng Y
    J Comput Neurosci; 2014 Oct; 37(2):281-91. PubMed ID: 24756619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Interaction on Specific Frequency Bands in Functional Corticomuscular Coupling.
    Xie P; Cheng S; Zhang Y; Liu Z; Liu H; Chen X; Li X
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):762-772. PubMed ID: 31180828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-step multimodal analysis framework for modeling corticomuscular activity with application to Parkinson's disease.
    Chen X; Wang ZJ; McKeown MJ
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1232-41. PubMed ID: 24108753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Multiscale Corticomuscular Coupling Networks Based on Ordinal Patterns.
    Liu L; Gao Y; Meng M; Houston M; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1045-1054. PubMed ID: 38010937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation Evaluation of Functional Corticomuscular Coupling With Abnormal Muscle Synergy After Stroke.
    Liu J; Wang J; Tan G; Sheng Y; Chang H; Xie Q; Liu H
    IEEE Trans Biomed Eng; 2021 Nov; 68(11):3261-3272. PubMed ID: 33764872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.