These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 37963179)
1. Cue- versus reward-encoding basolateral amygdala projections to nucleus accumbens. He Y; Huang YH; Schlüter OM; Dong Y Elife; 2023 Nov; 12():. PubMed ID: 37963179 [TBL] [Abstract][Full Text] [Related]
2. The Basolateral Amygdala to Nucleus Accumbens Core Circuit Mediates the Conditioned Reinforcing Effects of Cocaine-Paired Cues on Cocaine Seeking. Puaud M; Higuera-Matas A; Brunault P; Everitt BJ; Belin D Biol Psychiatry; 2021 Feb; 89(4):356-365. PubMed ID: 33040986 [TBL] [Abstract][Full Text] [Related]
3. Optogenetic activation of basolateral amygdala-to-nucleus accumbens core neurons promotes Pavlovian approach responses but not instrumental pursuit of reward cues. Servonnet A; Rompré PP; Samaha AN Behav Brain Res; 2023 Feb; 440():114254. PubMed ID: 36516942 [TBL] [Abstract][Full Text] [Related]
4. Increased Excitability and Synaptic Plasticity of Drd1- and Drd2-Expressing Prelimbic Neurons Projecting to Nucleus Accumbens after Heroin Abstinence Are Reversed by Cue-Induced Relapse and Protein Kinase A Inhibition. Kokane SS; Cole RD; Bordieanu B; Ray CM; Haque IA; Otis JM; McGinty JF J Neurosci; 2023 May; 43(22):4019-4032. PubMed ID: 37094933 [TBL] [Abstract][Full Text] [Related]
5. Optogenetic Activation of the Basolateral Amygdala Promotes Both Appetitive Conditioning and the Instrumental Pursuit of Reward Cues. Servonnet A; Hernandez G; El Hage C; Rompré PP; Samaha AN J Neurosci; 2020 Feb; 40(8):1732-1743. PubMed ID: 31953370 [TBL] [Abstract][Full Text] [Related]
6. Role of a Lateral Orbital Frontal Cortex-Basolateral Amygdala Circuit in Cue-Induced Cocaine-Seeking Behavior. Arguello AA; Richardson BD; Hall JL; Wang R; Hodges MA; Mitchell MP; Stuber GD; Rossi DJ; Fuchs RA Neuropsychopharmacology; 2017 Feb; 42(3):727-735. PubMed ID: 27534268 [TBL] [Abstract][Full Text] [Related]
7. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Stuber GD; Sparta DR; Stamatakis AM; van Leeuwen WA; Hardjoprajitno JE; Cho S; Tye KM; Kempadoo KA; Zhang F; Deisseroth K; Bonci A Nature; 2011 Jun; 475(7356):377-80. PubMed ID: 21716290 [TBL] [Abstract][Full Text] [Related]
9. Regulation of Alcohol Extinction and Cue-Induced Reinstatement by Specific Projections among Medial Prefrontal Cortex, Nucleus Accumbens, and Basolateral Amygdala. Keistler CR; Hammarlund E; Barker JM; Bond CW; DiLeone RJ; Pittenger C; Taylor JR J Neurosci; 2017 Apr; 37(17):4462-4471. PubMed ID: 28336571 [TBL] [Abstract][Full Text] [Related]
10. Inputs from the basolateral amygdala to the nucleus accumbens shell control opiate reward magnitude via differential dopamine D1 or D2 receptor transmission. Lintas A; Chi N; Lauzon NM; Bishop SF; Sun N; Tan H; Laviolette SR Eur J Neurosci; 2012 Jan; 35(2):279-90. PubMed ID: 22236063 [TBL] [Abstract][Full Text] [Related]
12. Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit. Lintas A; Chi N; Lauzon NM; Bishop SF; Gholizadeh S; Sun N; Tan H; Laviolette SR J Neurosci; 2011 Aug; 31(31):11172-83. PubMed ID: 21813678 [TBL] [Abstract][Full Text] [Related]
13. Drug Refraining and Seeking Potentiate Synapses on Distinct Populations of Accumbens Medium Spiny Neurons. Roberts-Wolfe D; Bobadilla AC; Heinsbroek JA; Neuhofer D; Kalivas PW J Neurosci; 2018 Aug; 38(32):7100-7107. PubMed ID: 29976626 [TBL] [Abstract][Full Text] [Related]
14. Bi-directional cannabinoid signalling in the basolateral amygdala controls rewarding and aversive emotional processing via functional regulation of the nucleus accumbens. Ahmad T; Sun N; Lyons D; Laviolette SR Addict Biol; 2017 Sep; 22(5):1218-1231. PubMed ID: 27230434 [TBL] [Abstract][Full Text] [Related]
15. Dopamine D1 or D2 receptor antagonism within the basolateral amygdala differentially alters the acquisition of cocaine-cue associations necessary for cue-induced reinstatement of cocaine-seeking. Berglind WJ; Case JM; Parker MP; Fuchs RA; See RE Neuroscience; 2006; 137(2):699-706. PubMed ID: 16289883 [TBL] [Abstract][Full Text] [Related]
16. Arc reactivity in accumbens nucleus, amygdala and hippocampus differentiates cue over context responses during reactivation of opiate withdrawal memory. Noe E; Bonneau N; Fournier ML; Caillé S; Cador M; Le Moine C Neurobiol Learn Mem; 2019 Mar; 159():24-35. PubMed ID: 30771462 [TBL] [Abstract][Full Text] [Related]
17. β1-Adrenoceptor in the Central Amygdala Is Required for Unconditioned Stimulus-Induced Drug Memory Reconsolidation. Zhu H; Zhou Y; Liu Z; Chen X; Li Y; Liu X; Ma L Int J Neuropsychopharmacol; 2018 Mar; 21(3):267-280. PubMed ID: 29216351 [TBL] [Abstract][Full Text] [Related]
18. Phosphoproteomic analysis of cocaine memory extinction and reconsolidation in the nucleus accumbens. Torregrossa MM; MacDonald M; Stone KL; Lam TT; Nairn AC; Taylor JR Psychopharmacology (Berl); 2019 Jan; 236(1):531-543. PubMed ID: 30411139 [TBL] [Abstract][Full Text] [Related]
19. Cue-evoked dopamine release in the nucleus accumbens shell tracks reinforcer magnitude during intracranial self-stimulation. Beyene M; Carelli RM; Wightman RM Neuroscience; 2010 Sep; 169(4):1682-8. PubMed ID: 20600644 [TBL] [Abstract][Full Text] [Related]
20. Attenuation of cue-induced heroin-seeking behavior by cannabinoid CB1 antagonist infusions into the nucleus accumbens core and prefrontal cortex, but not basolateral amygdala. Alvarez-Jaimes L; Polis I; Parsons LH Neuropsychopharmacology; 2008 Sep; 33(10):2483-93. PubMed ID: 18059440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]