These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37963464)

  • 1. A versatile pumpless multi-channel fluidics system for maintenance and real-time functional assessment of tissue and cells.
    Kamat V; Grumbine MK; Bao K; Mokate K; Khalil G; Cook D; Clearwater B; Hirst R; Harman J; Boeck M; Fu Z; Smith LEH; Goswami M; Wubben TJ; Walker EM; Zhu J; Soleimanpour SA; Scarlett JM; Robbings BM; Hass D; Hurley JB; Sweet IR
    Cell Rep Methods; 2023 Nov; 3(11):100642. PubMed ID: 37963464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluidics system for resolving concentration-dependent effects of dissolved gases on tissue metabolism.
    Kamat V; Robbings BM; Jung SR; Kelly J; Hurley JB; Bube KP; Sweet IR
    Elife; 2021 Nov; 10():. PubMed ID: 34734803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maintaining and Assessing Various Tissue and Cell Types of the Eye Using a Novel Pumpless Fluidics System.
    Grumbine MK; Kamat V; Bao K; Crupi T; Mokate K; Lim R; Chao JR; Robbings BM; Hass DT; Hurley JB; Sweet IR
    J Vis Exp; 2023 Jul; (197):. PubMed ID: 37522735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic perifusion to maintain and assess isolated pancreatic islets.
    Sweet IR; Cook DL; Wiseman RW; Greenbaum CJ; Lernmark A; Matsumoto S; Teague JC; Krohn KA
    Diabetes Technol Ther; 2002; 4(1):67-76. PubMed ID: 12017423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BaroFuse, a novel pressure-driven, adjustable-throughput perfusion system for tissue maintenance and assessment.
    Rountree A; Karkamkar A; Khalil G; Folch A; Cook DL; Sweet IR
    Heliyon; 2016 Dec; 2(12):e00210. PubMed ID: 27995203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microencapsulated 3-dimensional sensor for the measurement of oxygen in single isolated pancreatic islets.
    Chen W; Lisowski M; Khalil G; Sweet IR; Shen AQ
    PLoS One; 2012; 7(3):e33070. PubMed ID: 22479359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolated human islets require hyperoxia to maintain islet mass, metabolism, and function.
    Komatsu H; Kang D; Medrano L; Barriga A; Mendez D; Rawson J; Omori K; Ferreri K; Tai YC; Kandeel F; Mullen Y
    Biochem Biophys Res Commun; 2016 Feb; 470(3):534-538. PubMed ID: 26801563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets.
    Buchwald P
    Theor Biol Med Model; 2011 Jun; 8():20. PubMed ID: 21693022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous measurement of oxygen consumption by pancreatic islets.
    Sweet IR; Khalil G; Wallen AR; Steedman M; Schenkman KA; Reems JA; Kahn SE; Callis JB
    Diabetes Technol Ther; 2002; 4(5):661-72. PubMed ID: 12450449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical predictions of oxygen availability in micro- and macro-encapsulated human and porcine pancreatic islets.
    Cao R; Avgoustiniatos E; Papas K; de Vos P; Lakey JRT
    J Biomed Mater Res B Appl Biomater; 2020 Feb; 108(2):343-352. PubMed ID: 31013399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microperifusion system with environmental control for studying insulin secretion by pancreatic tissue.
    Dionne KE; Colton CK; Yarmush ML
    Biotechnol Prog; 1991; 7(4):359-68. PubMed ID: 1367346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of oxygen on isolated pancreatic tissue.
    Dionne KE; Colton CK; Yarmush ML
    ASAIO Trans; 1989; 35(3):739-41. PubMed ID: 2688724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia.
    Hals IK; Rokstad AM; Strand BL; Oberholzer J; Grill V
    J Diabetes Res; 2013; 2013():374925. PubMed ID: 24364039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilized microalgal cells as an oxygen supply system for encapsulated pancreatic islets: a feasibility study.
    Bloch K; Papismedov E; Yavriyants K; Vorobeychik M; Beer S; Vardi P
    Artif Organs; 2006 Sep; 30(9):715-8. PubMed ID: 16934101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a bioartificial pancreas: II. Effects of oxygen on long-term entrapped betaTC3 cell cultures.
    Papas KK; Long RC; Sambanis A; Constantinidis I
    Biotechnol Bioeng; 1999; 66(4):231-7. PubMed ID: 10578093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FEM-based oxygen consumption and cell viability models for avascular pancreatic islets.
    Buchwald P
    Theor Biol Med Model; 2009 Apr; 6():5. PubMed ID: 19371422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro assessment of pancreatic islet vitality by oxymetry.
    Zacharovova K; Berkova Z; Spacek T; Kriz J; Dovolilova E; Girman P; Koblas T; Jezek P; Saudek F
    Transplant Proc; 2005 Oct; 37(8):3454-6. PubMed ID: 16298627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased oxygen consumption rates in response to high glucose detected by a novel oxygen biosensor system in non-human primate and human islets.
    Wang W; Upshaw L; Strong DM; Robertson RP; Reems J
    J Endocrinol; 2005 Jun; 185(3):445-55. PubMed ID: 15930171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-parametric islet perifusion system within a microfluidic perifusion device.
    Adewola AF; Wang Y; Harvat T; Eddington DT; Lee D; Oberholzer J
    J Vis Exp; 2010 Jan; (35):. PubMed ID: 20104201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets.
    Longo EA; Tornheim K; Deeney JT; Varnum BA; Tillotson D; Prentki M; Corkey BE
    J Biol Chem; 1991 May; 266(14):9314-9. PubMed ID: 1902835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.