BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37963494)

  • 1. Thermoplastic polyurethane surface coated with polymer brushes for reduced protein and cell attachment.
    Almousa R; Xie D; Chen Y; Li J; Anderson GG
    J Biomater Appl; 2024 Jan; 38(6):758-771. PubMed ID: 37963494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic composite scaffolds based on surface modification of polydopamine on ultrasonication induced cellulose nanofibrils (CNF) adsorbing onto electrospun thermoplastic polyurethane (TPU) nanofibers.
    Cui Z; Lin J; Zhan C; Wu J; Shen S; Si J; Wang Q
    J Biomater Sci Polym Ed; 2020 Apr; 31(5):561-577. PubMed ID: 31920175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zwitterion Surface-Functionalized Thermoplastic Polyurethane for Antifouling Catheter Applications.
    Nikam SP; Chen P; Nettleton K; Hsu YH; Becker ML
    Biomacromolecules; 2020 Jul; 21(7):2714-2725. PubMed ID: 32459090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood compatibility of thermoplastic polyurethane membrane immobilized with water-soluble chitosan/dextran sulfate.
    Lin WC; Yu DG; Yang MC
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):82-92. PubMed ID: 16023839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers.
    Wagner VE; Koberstein JT; Bryers JD
    Biomaterials; 2004 May; 25(12):2247-63. PubMed ID: 14741590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of polyurethane with a hydrophilic, antibacterial polymer for improved antifouling and antibacterial function.
    Xie D; Howard L; Almousa R
    J Biomater Appl; 2018 Sep; 33(3):340-351. PubMed ID: 30089433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization.
    Liu Q; Singh A; Lalani R; Liu L
    Biomacromolecules; 2012 Apr; 13(4):1086-92. PubMed ID: 22385371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing.
    Liu M; Liu T; Chen X; Yang J; Deng J; He W; Zhang X; Lei Q; Hu X; Luo G; Wu J
    J Nanobiotechnology; 2018 Nov; 16(1):89. PubMed ID: 30419925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface characterization and protein interactions of segmented polyisobutylene-based thermoplastic polyurethanes.
    Cozzens D; Luk A; Ojha U; Ruths M; Faust R
    Langmuir; 2011 Dec; 27(23):14160-8. PubMed ID: 22023013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling.
    Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D
    Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Properties of a Biocompatible Thermoplastic Polyurethane and Its Anti-Adhesive Effect against
    Restivo E; Peluso E; Bloise N; Bello GL; Bruni G; Giannaccari M; Raiteri R; Fassina L; Visai L
    J Funct Biomater; 2024 Jan; 15(1):. PubMed ID: 38248691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial Activities of Thermoplastic Polyurethane/Clay Nanocomposites against Pathogenic Bacteria.
    Lee M; Kim D; Kim J; Oh JK; Castaneda H; Kim JH
    ACS Appl Bio Mater; 2020 Oct; 3(10):6672-6679. PubMed ID: 35019393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoplastic polyurethane:polythiophene nanomembranes for biomedical and biotechnological applications.
    Pérez-Madrigal MM; Giannotti MI; del Valle LJ; Franco L; Armelin E; Puiggalí J; Sanz F; Alemán C
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9719-32. PubMed ID: 24857815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyvinylchloride surface with enhanced cell/bacterial adhesion-resistant and antibacterial functions.
    Almouse R; Wen X; Na S; Anderson G; Xie D
    J Biomater Appl; 2019 May; 33(10):1415-1426. PubMed ID: 30841776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical surface modification of parylene C for enhanced protein immobilization and cell proliferation.
    Zhang C; Thompson ME; Markland FS; Swenson S
    Acta Biomater; 2011 Oct; 7(10):3746-56. PubMed ID: 21689793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Well-defined protein immobilization on photo-responsive phosphorylcholine polymer surfaces.
    Tanaka M; Kawai S; Iwasaki Y
    J Biomater Sci Polym Ed; 2017 Dec; 28(17):2021-2033. PubMed ID: 28803516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property.
    Liu P; Huang T; Liu P; Shi S; Chen Q; Li L; Shen J
    J Colloid Interface Sci; 2016 Oct; 480():91-101. PubMed ID: 27416290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gradation of proteins and cells attached to the surface of bio-inert zwitterionic polymer brush.
    Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Kishioka T; Usui Y
    Colloids Surf B Biointerfaces; 2016 Aug; 144():180-187. PubMed ID: 27085477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-initiated hyperbranched polyglycerol as an ultralow-fouling coating on glass, silicon, and porous silicon substrates.
    Moore E; Delalat B; Vasani R; McPhee G; Thissen H; Voelcker NH
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15243-52. PubMed ID: 25137525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.